
LarKC
The Large Knowledge Collider

a platform for large scale integrated reasoning and Web-search

FP7 – 215535

D11.4 Instrumentation and
Monitoring platform - Realization

Coordinator: Ioan Toma (SG)
With contributions from: Ioan Toma (SG), Raluca Brehar

(UTC), Silviu Bota (UTC), Mihai Chezan (SG), Ionel
Giosan(UTC), Mihai Negru (UTC), Andrei Vatavu (UTC)

Quality Assessor: Vassil Momtchev (ONTO)
Quality Controller: Sergiu Nedevschi (UTC)

Document Identifier: LarKC/2008/D11.4/V1.0
Class Deliverable: LarKC EU-IST-2008-215535
Version: version 1.0.0
Date: July 29, 2011
State: final
Distribution: public

FP7 – 215535

Deliverable 11.4

Executive Summary

This deliverable presents the final design and architecture of Semantic Instrumentation
and Monitoring (SIM), the instrumentation and monitoring solution for LarKC plug-
ins, workflows and platform components. It reports on the development and updates
of each SIM component, namely instrumentation mechanism, profiling agents, server,
visualization and relevance feedback, in terms of architecture and implementation. An
updated installation and user guide is also provided in order to support interested
users and developers to install and use SIM components, and also instrument LarKC
plug-ins and workflows. As part of the final prototype of the instrumentation and
monitoring solution, a large set of metrics, including methods, system, atomic and
compound metrics is supported. We also reported on the set of workflows and their
plugins that are instrumented and how visualization and relevance feedback compo-
nents are using the monitoring data collected from these workflows and plugins.

2 of 53

FP7 – 215535

Deliverable 11.4

Document Information
IST Project
Number

FP7 – 215535 Acronym LarKC

Full Title The Large Knowledge Collider: a platform for large scale integrated
reasoning and Web-search

Project URL http://www.larkc.eu/
Document URL
EU Project Officer Stefano Bertolo

Deliverable Number 11.4 Title Instrumentation and Monitoring platform - Re-
alization

Work Package Number 11 Title Instrumentation and Monitoring

Date of Delivery Contractual M40 Actual 31-July-11
Status version 1.0.0 final �
Nature prototype � report � dissemination �
Dissemination
Level

public � consortium �

Authors (Part-
ner)

Softgress, UTC

Resp. Author Ioan Toma E-mail ioan.toma@softgress.com
Partner Softgress, UTC Phone +40 7676 84924

Abstract
(for dissemination)

This deliverable presents the final design and architecture of Semantic In-
strumentation and Monitoring (SIM), the instrumentation and monitoring
solution for LarKC plugins, workflows and platform components. It re-
ports on the development and updates of each SIM component, namely
instrumentation mechanism, profiling agents, server, visualization and rel-
evance feedback, in terms of architecture and implementation. An updated
installation and user guide is also provided in order to support interested
users and developers to install and use SIM components, and also instru-
ment LarKC plug-ins and workflows. As part of the final prototype of the
instrumentation and monitoring solution, a large set of metrics, including
methods, system, atomic and compound metrics is supported. We also
reported on the set of workflows and their plugins that are instrumented
and how visualization and relevance feedback components are using the
monitoring data collected from these workflows and plugins.

Keywords Instrumentation, Monitoring, Architecture

3 of 53

FP7 – 215535

Deliverable 11.4

Project Consortium Information

Participant’s name Partner Contact
Semantic Technology Institute Innsbruck,
Universitaet Innsbruck

Prof. Dr. Dieter Fensel
Semantic Technology Institute (STI),
Universitaet Innsbruck,
Innsbruck, Austria
Email: dieter.fensel@sti-innsbruck.at

AstraZeneca AB Bosse Andersson
AstraZeneca
Lund, Sweden
Email: bo.h.andersson@astrazeneca.com

CEFRIEL - SOCIETA CONSORTILE A
RESPONSABILITA LIMITATA

Emanuele Della Valle
CEFRIEL - SOCIETA CONSORTILE A RE-
SPONSABILITA LIMITATA
Milano, Italy
Email: emanuele.dellavalle@cefriel.it

CYCORP, RAZISKOVANJE IN EKSPERI-
MENTALNI RAZVOJ D.O.O.

Michael Witbrock
CYCORP, RAZISKOVANJE IN EKSPERIMEN-
TALNI RAZVOJ D.O.O.,
Ljubljana, Slovenia
Email: witbrock@cyc.com

Höchstleistungsrechenzentrum,
Universitaet Stuttgart

Georgina Gallizo
Höchstleistungsrechenzentrum,
Universitaet Stuttgart
Stuttgart, Germany
Email : gallizo@hlrs.de

MAX-PLANCK GESELLSCHAFT ZUR
FOERDERUNG DERWISSENSCHAFTEN
E.V.

Dr. Lael Schooler,
Max-Planck-Institut für Bildungsforschung
Berlin, Germany
Email: schooler@mpib-berlin.mpg.de

Ontotext AD Atanas Kiryakov,
Ontotext Lab,
Sofia, Bulgaria
Email: naso@ontotext.com

SALTLUX INC. Kono Kim
SALTLUX INC
Seoul, Korea
Email: kono@saltlux.com

SIEMENS AKTIENGESELLSCHAFT Dr. Volker Tresp
SIEMENS AKTIENGESELLSCHAFT
Muenchen, Germany
Email: volker.tresp@siemens.com

THE UNIVERSITY OF SHEFFIELD Prof. Dr. Hamish Cunningham,
THE UNIVERSITY OF SHEFFIELD
Sheffield, UK
Email: h.cunningham@dcs.shef.ac.uk

VRIJE UNIVERSITEIT AMSTERDAM Prof. Dr. Frank van Harmelen,
VRIJE UNIVERSITEIT AMSTERDAM
Amsterdam, Netherlands
Email: Frank.van.Harmelen@cs.vu.nl

THE INTERNATIONAL WIC INSTI-
TUTE, BEIJING UNIVERSITY OF
TECHNOLOGY

Prof. Dr. Ning Zhong,
THE INTERNATIONAL WIC INSTITUTE
Mabeshi, Japan
Email: zhong@maebashi-it.ac.jp

INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER

Dr. Paul Brennan,
INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER
Lyon, France
Email: brennan@iarc.fr

INFORMATION RETRIEVAL FACILITY Dr. John Tait, Dr. Paul Brennan,
INFORMATION RETRIEVAL FACILITY
Vienna, Austria
Email: john.tait@ir-facility.org

4 of 53

FP7 – 215535

Deliverable 11.4

TECHNICAL UNIVERSITY OF CLUJ-
NAPOCA
http://www.utcluj.ro/

Prof. Dr. Eng. Sergiu Nedevschi
TECHNICAL UNIVERSITY OF CLUJ-
NAPOCA
Cluj-Napoca, Romania
E-mail: sergiu.nedevschi@cs.utcluj.ro

SOFTGRESS S.R.L.
http://www.softgress.com/

Dr. Ioan Toma
SOFTGRESS S.R.L.
Cluj-Napoca, Romania
E-mail: ioan.toma@softgress.com

5 of 53

FP7 – 215535

Deliverable 11.4

Table of Contents

List of figures 7

1 Introduction 8

2 SIM Architecture and components updates 9
2.1 Instrumentation mechanism . 9

2.1.1 SIM-Instrumentation internals 9
2.1.2 Information about collected metrics 14
2.1.3 Agent communication . 16

2.2 Profiling Agents . 16
2.3 Server . 18
2.4 Relevance Feedback . 20
2.5 Visualization . 25

2.5.1 Visualization Components . 25
2.5.2 Graph based visualization of monitoring ontology and data . . . 31

3 Installation and End-user guide 35
3.1 Instrumentation . 35

3.1.1 How to enable SIM for LarKC 35
3.1.2 Understanding the results of instrumentation 36
3.1.3 Extending SIM . 39

3.2 Visualization . 40
3.3 Relevance Feedback . 41

3.3.1 Compiling the application . 41
3.3.2 Running an example . 42

4 Using SIM tools for instrumenting and monitoring LarKC plugins
and workflows 46
4.1 Instrumented Workflows . 46
4.2 Visualization for instrumented workflows 47
4.3 Relevance Feedback for instrumented workflows 48

5 Conclusion 52

6 of 53

FP7 – 215535

Deliverable 11.4

List of Figures

2.1 SIM Instrumentation AspectJ Class Diagram 10
2.2 SIM-Instrumentation Data Collection Class Diagram 11
2.3 SIM Instrumentation LarKC AspectJ Class Diagram 12
2.4 SIM Instrumentation mechanism - Sequence Diagram 12
2.5 Profiling Agents - Class Diagram . 17
2.6 Metrics data model . 17
2.7 SIM Server Class Diagram . 19
2.8 The RF architecture and modules interaction 22
2.9 The RF off-line training application - class diagram 23
2.10 The RF off-line training application - detailed class diagram 24
2.11 Visualization Architecture . 25
2.12 MySQL Relational Database Schema 27
2.13 RRD access reading interface . 29
2.14 Visualization Flowchart . 30
2.15 Graph based visualization of monitoring ontology and data - Visualiza-

tion of metrics ontology . 31
2.16 Graph based visualization of monitoring ontology and data - Panel for

metrics selection and metrics charts . 32
2.17 Graph based visualization of monitoring ontology and data - Metrics

charts . 33
2.18 Graph based visualization of monitoring ontology and data - Metrics

charts for selected intervals . 33
2.19 Graph based visualization of monitoring ontology and data - Selecting

the method metric type and method 34

3.1 Data loading in the off-line RF training application 42
3.2 Building and saving a RF machine learning model 43
3.3 Using the RF model for predicting the parameters of a query. 44
3.4 Loading and testing a Best configuration RF model 45

4.1 Plugins and queries corresponding to the LLD_REASONIG workflow . 48
4.2 Query metrics . 49
4.3 Metrics that are stored as time-series values. Portlet representation. . . 49

7 of 53

FP7 – 215535

Deliverable 11.4

1. Introduction

The EU FP7 Large Knowledge Collider project (LarKC) is developing an infrastructure
that supports large-scale reasoning over billions of structured data in heterogeneous
data sets. Such an infrastructure ensures that computational components of that im-
plement methods from diverse fields can be coherently integrated (e.g. retrieval and
selection from IR, cognitive science or statistics; abstraction from machine learning
and knowledge modeling; or decision methods from economics or decision theory),
in order to coordinate large scale inference over distributed and heterogeneous infor-
mation and resources. The infrastructure supports researchers and practitioners to
run their own reasoning experiments and applications, and should allow for scaling
well beyond what is currently possible. In this context, measuring and understanding
how well the experiments are running becomes crucial. LarKC developers would like to
know for their plug-ins and components how performant they are, how many resources
they consume, how many times these plugins and components have been invoked and
used, how much data they consume and produce, and so forth. Answers for all these
questions, can be provided by what we call instrumentation and monitoring. WP11 is
developing a set of tools that can be used to instrument and monitor LarKC specific
applications.

This deliverable describes the final version of the instrumentation and monitoring
solution developed in LarKC. It reports on the development and updates of each SIM
component in terms of architecture and implementation. An updated installation and
user guide is also provided in order to support interested users and developers to install
and use SIM components, and also instrument LarKC plug-ins and workflows. The
deliverable also reports on the set of workflows and their plugins that are instrumented
and how visualization and relevance feedback components are using the monitoring
data.

This deliverable is organized as follows. Chapter 2 describes the updates of the
architecture and the latest developments in terms of implementation of each compo-
nent of the architecture. Chapter 3 provides details on how the instrumentation and
monitoring tools can be installed and used. Chapter 4 discusses the usage of SIM
tools on concrete LarKC workflows and plugins that have been instrumented. Finally,
Chapter 5 concludes the deliverable.

8 of 53

FP7 – 215535

Deliverable 11.4

2. SIM Architecture and components updates

This chapter reports on the current updates of Semantic Instrumentation and Monitor-
ing (SIM) and its components. As described in [1], SIM includes five major components
i.e. instrumentation mechanism, profiling agents, server, visualization and relevance
feedback. Since the last release, each SIM component has been further develop in order
to support instrumentation and monitoring of a larger set of LarKC plugins and work-
flows based on an extended set of metrics. In the rest of the chapter we shortly revisit
the functionality of each SIM component and we focus on describing the updates and
extensions of each components since the initial release of SIM in M35.

2.1 Instrumentation mechanism

Instrumentation mechanism is responsible for inserting code that performs measure-
ments in the key parts of the application that is instrumented. There are different ways
in which instrumentation can be realized e.g. either by direct source code editing, by
changing the already compiled sources (byte-code manipulation) or by following a
mixed approach in which source code is marked, using annotations for example, to be
instrumented by byte-code manipulation. The byte-code instrumentation can be done
at compile time or at runtime.

SIM-Instrumentation uses AspectJ1, a Java aspect oriented framework implemen-
tation. AspectJ allows SIM to inject instrumentation code into specific locations,
using byte-code manipulation. The aop.xml file defines the aspects to apply on code
at runtime and is read at startup by aspectjweaver javaagent. Basic measurements are
obtained by instrumenting specific classes from LarKC. More precisely the following
are instrumented: Larkc (platform startup), Executor (workflow creation), Sparql-
Handler (query execution) and any implementation of Plugin (plugin execution). The
following methods are targeted:

• eu.larkc.core.endpoint.sparql.SparqlHandler.handle;

• eu.larkc.core.executor.Executor.execute;

• eu.larkc.core.executor.Executor.getNextResults;

• eu.larkc.plugin.Plugin.invoke;

2.1.1 SIM-Instrumentation internals

Structure
SIM-instrumentation is structured into three main (sub)components/phases:

• code injection (done with the help of ApectJ constructs);

• metrics measurements and collection;

• agent communication;

Figure 2.1 contains the updated class diagram of the instrumentation mechanism.

Figure 2.2 contains the class diagram of the data collection mechanism.
1http://www.eclipse.org/aspectj

9 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.1: SIM Instrumentation AspectJ Class Diagram

10 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.2: SIM-Instrumentation Data Collection Class Diagram

The updated class diagram for specific instrumentation of LarKC platform, plug-
ins, workflows and queries is available in Figure 2.3.

The updated interaction between the (sub)components of the instrumentation
mechanism is illustrated in Figure 2.4.

Project wise, SIM-instrumentation is split into:

1. sim-instrumentation, holding the generic instrumentation code, hosted @ https:
//github.com/semantic-im/sim-instrumentation

2. sim-instrumentation-larkc, holding the Larkc specific code, integrated into Larkc
project

Code injection
sim.instrumentation.aop.aspectj.AbstractMethodInterceptor is the base aspect that han-
dles all the AspectJ and metrics measurements plumbing. It defines the abstract
pointcut methodExecution() which represents the place where the code injection will
take place and where measurements will be performed. Concrete aspects extending
AbstractMethodInterceptor need to implement this pointcut using standard AspectJ
pointcut definition. For example to instrument all LarKC plugins one could define
pointcut methodToInstrument() as:

pub l i c po intcut methodsToInstrument () : with in (eu . l a r k c . p lug in . Plugin)
&& execut ion (∗ ∗ (. .)) ;

Another option is to use the @Instrument annotation. For example to instrument
all Larkc plugins one needs to annotate eu.larkc.plugin.Plugin with @Instrument an-
notation.

11 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.3: SIM Instrumentation LarKC AspectJ Class Diagram

Figure 2.4: SIM Instrumentation mechanism - Sequence Diagram

12 of 53

FP7 – 215535

Deliverable 11.4

@Instrument pub l i c ab s t r a c t c l a s s Plugin \ { . . . \ }

Context creation is handled by AbstractContextCreator, base abstract aspect used
to indicate a method or constructor where a new context should be created for the
current execution flow.

A Context is a container of information for an execution flow subgraph. It is
uniquely identify by an id, it has a name and a tag and is linked to its parent Context
through parentContextId property (which can be null in case this context is the root
context). Any system can be seen as a black box that takes external input, processes it
and produces the output. We call this process, of taking the input and producing the
output, an "execution flow". So an execution flow can be seen as a series of operations,
that can be executed either one after the other or in parallel or both. These operations
can be grouped based on logical function they perform. Tracking these logical groups
is made possible by creating one Context for each of them. Operations from one
logical group will then use the Context of that logical group to publish information.
For example, in case of an ETL (Extract, Transform, Load) type of execution flow,
we would like to group the operations of this execution flow into the three logical
functions, in our case: extract, transform, load. This can be done by creating three
Context instances for each logical function. Operations executing for logical function
Extract would operate on the Extract Context, those for Transform would operate on
the Transform Context and those for Load would operate on the Load Context.

In order to create a new context for the current execution flow, one needs to de-
fine a concrete aspect of AbstractContextCreator that implements the methodToCre-
ateNewContext pointcut, which defines the method or constructor that will create a
new context when executed. Optionally, the concrete aspect can also override get-
ContextNameAndTag method in order to define a custom name and tag for the new
created context. Default implementation returns the class name of this joint point as
the Name of the new context and the package name as the Tag.

An example on how to create a new context when method myMethod from MyClass
is given below.
pub l i c aspect MyNewContext extends AbstractContextCreator {

pub l i c po intcut methodToCreateNewContext () : execut ion (∗ MyClass .myMethod (. .)) ;
p ro tec t ed St r ing [] getContextNameAndTag (JoinPoint jp) {

re turn new St r ing [] {"CustomContextName" , "CustomContextTag "} ;
}

}

The same thing can be accomplished by using the @CreateContext annotation:
pub l i c c l a s s MyClass {

@CreateContext (name="CustomContextName" , tag=ÓCustomContextTagÓ)
pub l i c void myMethod () {É}

}

Writing information into Context is done using AbstractContextWriter, base ab-
stract aspect used to indicate a join point where values that are available at that join
point should be written/published to the context of the current execution flow.

The placeToTriggerTheContextWrite pointcut defines the joint point where the
reading of the values we want to publish to the context should happen. It can be a
method or a constructor execution, a field get or set or an exception handler.

In order to publish values to the current context of the execution flow, one needs to
define a concrete aspect of AbstractContextWriter that implements the placeToTrig-
gerTheContextWrite pointcut. Optionally, the concrete aspect can also override read-
ValuesBefore and/or readValuesAfter methods in order to publish custom values to
the context. Default implementation will write to context the arguments (if there are
any) in case the executing joint point is a method or constructor, the field value in

13 of 53

FP7 – 215535

Deliverable 11.4

case of a field set and the exception message in case of exception. Also returns the
return value (if there is any) in case the executing joint point is a method and the field
value in case of a field get.

An example on how to publish values to the context when method myMethod from
MyClass is given below.
pub l i c aspect MyContextWriter extends AbstractContextWriter {

pub l i c po intcut placeToTriggerTheContextWrite () : execut ion (∗ MyClass .myMethod (. .)) ;
}

The same thing can be accomplished by using the @WriteToContext annotation:
pub l i c c l a s s MyClass {

@WriteToContext
pub l i c void myMethod () {É}

}

2.1.2 Information about collected metrics

The generic part of SIM (sim-instrumentation) allows for the measuring of the following
metrics on method invocation:

• wall clock time - elapsed time between method entry and method exit (ms)

• thread user cpu time - user CPU time spent by current thread executing this
method (ms)

• thread system cpu time - system CPU time spent by current thread executing
this method (ms)

• thread total cpu time - total CPU time spent by current thread executing this
method (user time + system time) (ms)

• process total cpu time - total CPU time spent by current process (all threads
from the application) while executing this method (ms)

• thread count - how many threads did this method invocation create (integer)

• thread block count - the total number of times that the current thread executing
this method entered the BLOCKED state (integer)

• thread block time - the total accumulated time the current thread executing this
method has been in the BLOCKED (ms)

• thread wait count - the number of times that the current thread executing this
method has been in the WAITING or TIMED_WAITING state (integer)

• thread wait time - the total accumulated time the current thread executing this
method has been in the WAITING or TIMED_WAITING state (ms)

• gcc count - total number of collections that have occurred while executing this
method

• gcc time - approximate accumulated collection elapsed time in milliseconds while
executing this method

• endedWithError - tells if the method ended with an uncaught exception

14 of 53

FP7 – 215535

Deliverable 11.4

• exception - in case the method execution ended with an exception this is the
exception.toString result

Every five seconds also generic platform measurement are collected:

• gcc count - total number of collections since platform start (count)

• gcc time - total accumulated collection elapsed time since platform start (ms)

• cpu time - total CPU time spent by current instrumented application since plat-
form start (ms)

• uptime - total time since platform start (ms)

• average cpu usage - average cpu usage since platform start (%)

• cpu usage - cpu usage for the last 5 seconds (%)

• used memory - the amount of current used memory in bytes (bytes)

The LarKC specific part of SIM (sim-instrumentation-larkc) allows execution flow
context information to be attached to the generic method invocation measurements.
The information that is collected can be grouped in three major groups: query, work-
flow and plugin related information. They are specific method metrics measured on
specific methods that correspond to query, plugin and workflow execution, metrics
that are determine by processing the content of the query, or metrics that specify the
size of data processed or produced by a plugin.

• Query related metrics: QueryContextInstance, QueryBeginExecutionTime,
QueryEndExecutionTime, QueryErrorStatus, QueryContent, QuerySizeInChar-
acters, QueryNamespaceNb, QueryVariablesNb, QueryDataSetSourcesNb, Query-
OperatorsNb, QueryResultOrderingNb, QueryResultLimitNb, QueryResultOff-
setNb, QueryResultSizeInCharacters, QueryTotalResponseTime, QueryProcessTo-
talCPUTime, QueryThreadTotalCPUTime, QueryThreadUserCPUTime, Query-
ThreadSystemCPUTime, QueryThreadCount, QueryThreadBlockCount, Query-
ThreadBlockTime, QueryThreadWaitCount, QueryThreadWaitTime, QueryThread-
GccCount, QueryThreadGccTime

• Workflow related metrics: WorkflowNumberOfPlugins, WorkflowTotalRe-
sponseTime, WorkflowProcessTotalCPUTime, WorkflowThreadTotalCPUTime,
WorkflowThreadUserCPUTime, WorkflowThreadSystemCPUTime, WorkflowThread-
Count, WorkflowThreadBlockCount, WorkflowThreadBlockTime, WorkflowThread-
WaitCount, WorkflowThreadWaitTime, WorkflowThreadGccCount, WorkflowThread-
GccTime

• Plugin related metrics: PluginName, PluginBeginExecutionTime, PluginEn-
dExecutionTime, PluginErrorStatus, PluginTotalResponseTime, PluginProcessTo-
talCPUTime, PluginThreadTotalCPUTime, PluginThreadUserCPUTime, Plug-
inThreadSystemCPUTime, PluginThreadCount, PluginThreadBlockCount, Plug-
inThreadBlockTime, PluginThreadWaitCount, PluginThreadWaitTime, Plug-
inThreadGccCount, PluginThreadGccTime, PluginInputSizeInTriples, PluginOut-
putSizeInTriples, PluginCacheHit

15 of 53

FP7 – 215535

Deliverable 11.4

Generic metrics measurements such as wallClockTime, threadUserCpuTime, thread-
Count, threadBlockTime, threadWaitTime, threadGccTime are provided by the Util
class sim.instrumentation.data.Metrics. In order to perform method metrics measure-
ments sim.instrumentation.data.Probe builder should be used.
// be f o r e method invoca t i on
MethodProbe mp = Probe . createMethodProbe (class_name , method_name) ;
mp. s t a r t ()
// invoke method
. . .
// a f t e r method invoca t i on
mp. end () ;

When mp.end() is called, metrics measurements is finalized and the measurements
are also published to the sim.instrumentation.data.Collector, class responsible for col-
lecting measurements and sending them to the agent.

2.1.3 Agent communication

The class sim.instrumentation.data.Collector.AgentComunicator implements the com-
munication with profiling agents. AgentComunicator is running in a separate thread
and sends every 5 seconds the collected metrics measurements to the agent using
standard Java serialization over TCP sockets.

2.2 Profiling Agents

Collecting the monitoring data from the instrumentation mechanism and sending it
to the server is the responsibility of profiling agents. A profiling agent is deployed
on system where the instrumentation mechanism is running. The communication
between the instrumentation mechanism and the agent is implemented in a client-
server fashion. The instrumentation mechanism plays the role of an active client which
sends monitored data from the application being instrumented to the agent. The agent
can be seen as a lightweight server that collects data received from the instrumentation
mechanism. Furthermore, the agent collects generic system measurements for the node
where it is deployed (e.g. total memory or CPU consumption of the node).

Figure 2.5 contains the updated class diagram of the profiling agents.
The agent received metrics measurements from the instrumentation mechanism at

the regular intervals. The updated internal data model used for representing metrics
measurements is available in Figure 2.6.

The same data model is used for further communication between the agent and the
server component. To enable easy access to generic system measurements, profiling
agents expose such data through Java Management Extensions (JMX)2 interface. In
this way any tool, for example graphical tool, that “knows" JMX can connect to the
agent, receive and display generic system measurements. The agents also communicate
with the server, the central point where the data is stored and aggregated. The
communication approach is implemented in the same client-server approach as between
instrumentation mechanism and the agent. Other features that are supported include:
(i) buffering of data received from the instrumentation mechanism and (ii) reliable
communication between the agent and server e.g. if agent terminates, for various
reasons, and is not able to send the entire data to the server, when restarted it must
be able to send the rest of the data.

2http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

16 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.5: Profiling Agents - Class Diagram

Figure 2.6: Metrics data model

17 of 53

FP7 – 215535

Deliverable 11.4

2.3 Server

The server component stores collected monitoring data using three technical solutions,
namely: (i) Round Robin Database (RRD), (ii) Relational Database (RDBMS) and
(iii) Semantic storage.

The semantic storage component retrieves monitoring data from the profiling agents,
creates RDF statements according to the metrics ontology described in [2], and stores
these statements in the underlying RDF storage. The RDF2Go3 library is used to com-
municate with the underlying RDF storage. RDF2Go is an API that abstracts from
the underlying RDF storage and provides connectors for various RDF storages such
as OWLIM or Sesame. Using RDF2Go, the SIM server communicates with OWLIM4

or Sesame5. Data from the semantic storage component is used by the relevance feed-
back and visualization component. These components access the data by executing
SPARQL queries against the semantic storage. The retrieved data, in RDF format, is
then transformed in the format required by these components (e.g. ARFF format in
the case of relevance feedback).

Round Robin Database (RRD) technology is used for its feature of aggregating
series of measurements of metrics such as CPU consumption, memory usage, etc. The
values of these metrics are are changing frequently (e.g. frequent change of CPU
consumption of a node where a plug-in is running). RRD is not used as overall stor-
age for all measurements but rather as a support tool for aggregation of numerical
measurements.

RDBMS are used as an alternative solution for storing the monitoring data being
well know, established and familiar technology. The visualization component in par-
ticular uses the RDBMS storing solution. The semantic and RDBMS-based storage
mechanisms are used as overall storage mechanisms. SIM users can choose to have the
overall storage solution based on semantic or RDBMS repositories.

More details on how relevance feedback and visualization components interact with
the storage mechanisms, available as part of the server component, are provided in
Section 2.4 and Section 2.5.

The updated class diagram of the server component is available in Figure 2.7.
Besides storing monitoring data, the server component is also capable of aggregat-

ing it into more complex metrics, called compound metrics. The compound metrics
are computed periodically (every hour and every day) based on atomic metrics values.
To retrieve the values of atomic metrics stored in the data layer, SPARQL queries
are executed at fix time intervals. Once retrieved they are aggregated into compound
metrics which are written back into the data layer. The following compound metrics
are currently supported by SIM Server component.

• QueriesPerTimeInterval - counts the number of queries that were received in a
given time interval

• QuerySuccessRatePerTimeInterval - counts the number of queries that finished
with success

• QueryFailureRatePerTimeInterval - counts the number of queries that finished
with failure

3http://semanticweb.org/wiki/RDF2Go
4http://www.ontotext.com/owlim/
5www.openrdf.org/

18 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.7: SIM Server Class Diagram

19 of 53

FP7 – 215535

Deliverable 11.4

• WorkflowsPerTimeInterval - counts the number of workflows of a given name
(id) that were started in a given time interval

• WorkflowAvgDurationPerTimeInterval - the average duration of a given workflow
in a given time interval

• PlatformPluginTotalExecutionTimePerTimeInterval - total execution time of
the given plug-in in a given time interval.

• PlatformPluginAvgExecutionTimePerTimeInterval - average execution time of
the given plug-in in a given time interval.

• WorkflowPluginTotalExecutionTimePerTimeInterval - total execution time of
the given plug-in in a given time interval for the given workflow.

• WorkflowPluginAvgExecutionTimePerTimeInterval - average execution time of
the given plug-in in a given time interval for the given work-flow.

• PlatformPluginTotalThreadsStartedPerTimeInterval - total number of threads
of the given plug-in in a given time interval.

• PlatformPluginAvgThreadsStartedPerTimeInterval - average number of threads
started by the given plug-in in a given time interval.

• WorkflowPluginTotalThreadsStartedPerTimeInterval - total number of threads
started by the given plug-in in all the runs of a specified workflow in a given
time interval.

• WorkflowPluginAvgThreadsStartedPerTimeInterval - average number of threads
of the given plug-in in all the runs of a specified workflow in a given time interval.

2.4 Relevance Feedback

The relevance feedback component comprises the on-line application module and the
off-line training module:

• the off-line training module - consists in several data mining algorithms. It has
the role of building prediction models that based on previously recorded values
for input and output metrics is able to find the relationship between input and
output metrics.

• the on-line application module - applies the model defined by the off-line training
module, such that given the input metrics it returns the values of output metrics
(expected values) and feedback based on the function defined in the prediction
models.

The relevance feedback top-level architecture is depicted in Figure 2.8. The remark
is that the whole architecture interacts directly or indirectly with three other entities:
the user, the visualization module and the data storage container.

In the on-line part, the user interacts directly with the visualization component by
sending the input query, workflow and constraints that are subject of the prediction
process. The visualization module sends data to the model loader which should select
the proper prediction model used for building the prediction and feedback results. The

20 of 53

FP7 – 215535

Deliverable 11.4

interaction with the data storage container refers to the fact that the model loader
takes the proper prediction model by querying the models’ database. The chosen
prediction model is sent back to the loader which sends it further to the applying
prediction component. In this part, the new query, workflow and constraints both
with the prediction model lead to some output predicted metrics values and feedback.
These results are sent back to the visualization module and the user can analyze them.
The whole on-line process should be fast enough to make a reasonable prediction such
that the user does not wait a long period of time.

The off-line part is implemented in a standalone application which is described in
more details in the “End-user guide” chapter. The data collector module connects to
the data storage component, gets the values of input and output metrics needed for
training the prediction models and transform them in Weka specific ARFF files (see
deliverable D11.2). The data preprocessing module gets the initial raw data set from
the ARFF files and applies some transformations to obtain the selected features data
set compatible with the next prediction model builders. Then, a set of prediction
models are built to satisfy all the scenarios proposed (D11.3, chapter 4): scalability
analysis, bottleneck prediction, workflow prediction based on raw data. All the predic-
tion modules take the selected features data as the input and offer the corresponding
prediction models as the result. We have implemented the following prediction models
corresponding to each model builder from the architecture schema:

• Clustering&Regression (D11.3, section 3.3) which satisfies both the scalability
analysis and bottleneck prediction scenarios.

• Kernel-Regression which estimates the conditional expectation of a random vari-
able, so that it predicts one output metric conditioned by the set of corresponding
input values. It satisfies the scalability analysis prediction scenario.

• Best configuration (D11.3, section 4.3) which selects the best workflow that may
solve a given query and predicts the output metrics for that situation. It satisfies
the work-flow prediction based on raw data scenario.

• Kernel Canonical Correlation Analysis (D11.3, section 3.4) is used for finding a
relationship between input and output metrics and predict the output metrics
values knowing the input values and the previously computed correspondence.
It solves the scalability analysis scenario.

All prediction models are saved into the data storage container by the model saver
module for later use in the on-line predictions and feedback. The data storage is used
by the relevance feedback component both in on-line and off-line processes.

The updated overall design of the off-line relevance feedback application is pre-
sented in 2.9. Although, many of the classes were described in D11.2 section 2.2.5 we
present a short description of all classes and packages:

• Weka machine learning library is used for defining some specific data structures
(ARFF files and instances) and for solving some particular operations.

• Jena library package is used for parsing the new input SPARQL queries.

• Jama library offers support for matrix operations which is very useful in Kernel-
Regression module.

• The “MainFrame” class contains all the design and associated functionalities of
the whole off-line application user interface.

21 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.8: The RF architecture and modules interaction

22 of 53

FP7 – 215535

Deliverable 11.4

• The “FileFilterExt” class is used for the GUI interaction with the ARFF data
files (loading, saving).

• The “DataPreprocessor” gets an initial raw data set and apply a set of transfor-
mations to obtain a compatible data set for the prediction classes.

• The “ClusterMain” class has the responsibility to apply a expectation-maximization
clustering technique on the training data.

• The “Predictor” class is a generic predictor used in computing all the prediction
models that will be used.

• The “RFClusteringRegression”,“KernelRegression”,“BestConfigurator” classes im-
plement the prediction functionalities, stated in the previous paragraphs, in cor-
respondence with the proposed scenarios. They also have functionalities for
saving/loading models to/from data storage.

Figure 2.9: The RF off-line training application - class diagram

The detailed class-diagram with all class attributes, methods and relationships of
the training system is presented in Figure 2.10.

23 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.10: The RF off-line training application - detailed class diagram

24 of 53

FP7 – 215535

Deliverable 11.4

2.5 Visualization

The visualization, analysis and reporting tool allows us to enable easy interpretation
of the data collected during instrumentation and monitoring. Using this tool, LarKC
users and developers can visualize real-time or historical data. Furthermore they can
analyze reports based on aggregated metric values. The Visualization module does
not interact directly to the LarKC platform. The instrumentation agents are grabbing
and writing metrics data in the visualization data layer. The metrics are transformed
then by the visualization logic into a more intuitive representation at the platform,
workflows, plugins and queries levels.

Figure 2.11 describes the general architecture of the visualization framework.

Figure 2.11: Visualization Architecture

2.5.1 Visualization Components

Our visualization module is responsible for (1) displaying data and metrics about the
LarKC platform, plug-ins and workflows and (2) for sending input metrics to the rele-
vance feedback module and displaying the results provided by the relevance feedback.
The visualization is a web-based, client-server application with several modules for

25 of 53

FP7 – 215535

Deliverable 11.4

representing real-time and historical data, composed of atomic and compound metrics
about:

• LarKC platform in general.

• Queries that were passed to the LarKC platform.

• Workflows used to execute the queries.

• Plug-ins that compose the workflows.

The visualization module is separated into the following main components: Client-
Side Component, Server Side Business Logic and Data Layer Component. The descrip-
tion of these components and concepts for best practices can be found in deliverable [3].

Traditional web applications contain several HTML pages and links between those
pages. Usually, for the client side implementation Google Web Toolkit (GWT) works
with a single HTML page. This could be a problem when an application includes
more pages, because GWT was meant to be used as a standalone web application
development platform. Another issue is that GWT does not allow loading multiple
modules into a single page and does not integrate well with existing HTML elements.

To overcome this problems one of the solutions is to adopt the JSR-286 portlet
standard. Thus a visualization scenario can be split into many atomic tasks. Each
visualization task can be considered as an atomic portlet (widget) that could be ag-
gregated at a higher level into a single web-based environment.

In order to provide a scalable and easy to maintain solution, for the server side
business logic, we chose the Liferay Portal as the web application aggregator and
content management system. Liferay is an open source portal platform that allows
users to create relevant content, and integrate their custom functionality into a single
web-based environment. The Liferay interface is composed of smaller, self-contained
web elements, called Portlets. The portlet specification is included in JSR-168 stan-
dard. Liferay also supports Inter Portlet Communication (IPC), introduced in JSR-
286. Therefore, the visualization component philosophy consists in developing new
visualization portlets and adapting the existing ones to the portlet specification and
aggregating them into a single visualization portal environment according to existing
requirements.

Some of the features offered by Liferay are listed below:

• Liferay provides Contend Management Functionalities in a single portal environ-
ment.

• It’s easy to use, extensible, integrated with other tools and standards.

• It’s free and open source (LGPL License).

• User interface development and customization can be made by using the Liferay’s
plugins SDK.

• Each visualization task can be developed as separate portlet project by different
developers and integrated subsequently into the visualization platform.

Two mechanisms for client-server communication can be used: by making GWT
Remote Procedures Calls or by retrieving JSON Data via HTTP requests (see [3]).

For data persistence the visualization interacts with two kinds of databases:

26 of 53

FP7 – 215535

Deliverable 11.4

• Relational DB: MySQL database - permits to create a consistent, logical rep-
resentation of metrics and other relevant features. The MySQL queries and
responses are coordinated by the server through the JDBC connector.

• RRD database: able to store time-series values. In order to handle this type of
data we use the RRDTool component.

MySQL database

The relational data base schema we propose is described in Figure 2.12.

Figure 2.12: MySQL Relational Database Schema

In the defined model, the “Platforms” table stores data about each instance of the
platform that has been instrumented (a unique identifier is provided to each platform).
Each platform has a list of workflows that have been run by it and the connection
between the platform and the workflows is done via the table “Platform_Workflows”.

Each workflow can be run for a query (also uniquely identified) or more queries
and the linking is made by “Queries_Workflows” table.

27 of 53

FP7 – 215535

Deliverable 11.4

The relation between the list of plug-ins and a workflow for which they are run is
done via the table “Workflows_Plugins”. The description of plugins is stored in table
“Plugins” and the description of workflows is stored in table “Workflows”.

The information about metrics is collected in table “Metrics” that lists the names
of all the metrics and “MTypes” that contains the types of metrics (like atomic,
compound, query metric, workflow metric, plug-in metric, etc). The values of the
metrics are stored in the tables: “Platforms_metrics”, “Workflows_Metrics”, “Plug-
ins_Metrics”, “Queries_Metrics”.

RRD database

An important aspect of monitoring is the ability to view real time data, such as the
processor load, memory and other resource utilization etc. This type of data can best
be represented as a time series. We cannot, however, continuously store such data,
because the storage size will continually increase. Therefore, only relatively recent
data should be stored. Old data should be aggregated. The de facto standard for high
performance storage and access to such data is RRDTool6.

An RRD database (which in the usual DBMS parlance would be best described as
just a table) contains one ore more data series, but all of them must be sampled at the
same time points (i.e. there is a single time stamp column, and any number of value
columns.) The number of the entries in the table is limited to a configurable value.
Besides the values themselves, the database can also contain aggregated (archived)
data. Archived data is obtained by applying an aggregation function (such as AVER-
AGE, MAX, MIN) on accumulated data. The number of aggregated entries is also
fixed and configurable.

Because all the columns must share the same time stamp, and we chose to use mul-
tiple databases, each database containing a single data column, corresponding to one
atomic metric. Currently, we have the following databases: IdlePercent, IdleTime,
IOIn, IOOut, IRQPercent, IRQTime, SwapIn, SwapOut, SysPercent, SystemLoad-
Average, SystemOpenFileDescriptorCount, SysTime, TotalSystemFreeMemory, Total-
SystemUsedMemory, TotalSystemUsedSwapSpace, UserPercent, UserTime, WaitPer-
cent, WaitTime. More databases can be created as needed.

RRDTool is a RRD application written in the C programming language. In order
to use RRD from Java we needed a Java based implementation. Currently there are
two such implementation and they are almost equivalent. The first one is RRD4J7
distributed under the Apache 2.0 license and the second one is JRobin8 distributed
under the LGPL license. Because they are similar we provided interfaces for both of
them.

Our interface allows both writing data into the RRD and reading data from it.
Writing data is straight-forward; it is embedded directly in the server code. Data
reading (publishing) is done using a RESTlet component9. The data is transmitted
using the JavaScript Object Notation (JSON10). The object is an array, containing
time stamp – value pairs.

6http://www.mrtg.org/rrdtool
7https://rrd4j.dev.java.net/
8http://www.jrobin.org/index.php/Main_Page
9http://www.restlet.org/

10http://www.json.org/

28 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.13: RRD access reading interface

The interaction between the main visualization modules and the users is presented
in figure 2.14.

29 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.14: Visualization Flowchart

30 of 53

FP7 – 215535

Deliverable 11.4

2.5.2 Graph based visualization of monitoring ontology and data

In the rest of this section we introduce a web based graphical tool that can be used
to visualize graph structures such as ontologies. We use this tool to visualize the
monitoring ontology that includes the metrics defined in [2] and also the instance data
of the metrics. The tool is designed as a client server application, the client is used for
visualization and the server supplies the data for the client. The client is a javascript
application running into any browser supporting HTML5. The ontology is visualized
into the client as a graph. The nodes of the graph are classes, object properties
and data properties. The D3 library specialized in manipulating documents based
on data is used to create interactive SVG graph and charts, see http://mbostock.
github.com/d3/ Visualization of the metrics ontology using the tool is illustrated in
Figure 2.15.

Figure 2.15: Graph based visualization of monitoring ontology and data - Visualization
of metrics ontology

The navigation start from one root element, which is the ontology. The children of
the root element are all the classes that are no subclasses of any other class (we ignore
here the possible inferences which would make any class a subclass of owl:Thing). One
class can have the following children: other classes that directly subclass it, properties
having this class as range or domain. To allow a better navigation of this graph we
group into clusters children more than a configurable value. For example, if a class
has 18 children and the cluster maximum size is 10 then before displaying the children
we display 2 clusters, one which give access to the first 10 elements of the class and
another one giving access to the other 8 children.

The client obtains the data to display from the server. The server is an web
server following the REST (REpresentational State Transfer) technology and is im-

31 of 53

FP7 – 215535

Deliverable 11.4

plemented using Restlet framework11. The data transfer between client and server
and vice versa is respecting JSON format12. Most of the client calls are done asyn-
chronously to assure a smooth visualization. On his end the server connects to a
RDF repository (OWLIM or Sesame) for obtaining the ontology schema and in-
stances. The data is obtaining using SPARQL interrogations and the the Java li-
brary for this job is RDF2Go13. The source code of the tool is available at https:
//github.com/semantic-im/sim-visualization.

Visualization of the monitoring data is illustrated in Figure 2.16, Figure 2.17,
Figure 2.18 and Figure 2.19. Figure 2.16 shows the panel that allows the used to
select the metrics she/he is interested in. Figure 2.17 shows graphics of the selected
metrics. Figure 2.18 shows graphics of the selected metrics for selected intervals.
Finally, Figure 2.19 shows how to select the method metric type and method for
which one would like to visualize the monitoring data.

Figure 2.16: Graph based visualization of monitoring ontology and data - Panel for
metrics selection and metrics charts

11http://www.restlet.org/
12http://www.json.org/
13http://semanticweb.org/wiki/RDF2Go

32 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.17: Graph based visualization of monitoring ontology and data - Metrics
charts

Figure 2.18: Graph based visualization of monitoring ontology and data - Metrics
charts for selected intervals

33 of 53

FP7 – 215535

Deliverable 11.4

Figure 2.19: Graph based visualization of monitoring ontology and data - Selecting
the method metric type and method

34 of 53

FP7 – 215535

Deliverable 11.4

3. Installation and End-user guide

This section contains information on how the WP11 tools, namely instrumentation,
relevance feedback and visualization tools, can be installed and used. This section is
an updated of the initial guide provided in [1], Section 3.

3.1 Instrumentation

The LarKC platform depends on sim-instrumentation (a WP11 project hosted on
https://github.com/semantic-im/sim-instrumentation that contains generic in-
strumentation and monitoring code) and aspectjweaver javaagent (part of AspectJ)
which is used to enable LTW (Load Time Weaving). Specific code for instrumenting
and monitoring the LarKC platform is available at https://github.com/semantic-im/
sim-instrumentation-larkc. This code is made available also as part of the LarKC
platform.

As mentioned in Section 2, instrumentation is done with the help of AspectJ1, an
aspect oriented extension to Java. Using AspectJ, SIM injects instrumentation code
into specific locations, using byte-code manipulation. Customization of the AspectJ
LTW can be done with the help of META-INF/aop.xml file which defines the aspects
to apply on code at runtime and is read at startup by aspectjweaver javaagent.

3.1.1 How to enable SIM for LarKC

To enable instrumentation on LarKC, aspectjweaver.jar must be set as javaagent for
the LarKC JVM. On command line (linux with maven) type:
java -Xmx512m -javaagent:$HOME/.m2/repository/org/aspectj/aspectjweaver/1.6.9/aspectjweaver-1.6.9.jar

-jar larkc-platform.jar

where $HOME/.m2/repository represents the maven repository, where aspectjweaver
should be downloaded by maven when LarKC platform is build.

Another way of enabling instrumentation is with Eclipse for which you need to
create a new Java Application Run Configuration following the steps:

1. Menu->Run->Run Configurations...

2. select Java Application

3. click New launch configuration button

4. for Project, click Browse and select the LarKC platform project

5. for main class enter: eu.larkc.core.Larkc

6. select Arguments tab and for VM arguments enter:

−Xmx512m −javaagent : ${ system_property : user . home}
/ .m2/ r epo s i t o r y / org / a sp e c t j / aspect jweaver /1 . 6 . 9 /
aspect jweaver −1 . 6 . 9 . j a r

where $system_property:user.home returns the user home folder and
$system_property:user.home/.m2/repositoryend represents the maven repository,

1http://www.eclipse.org/aspectj/downloads.php

35 of 53

FP7 – 215535

Deliverable 11.4

where aspectjweaver should be downloaded by maven when Larkc platform is
build.

To view the measurements made by instrumentation sim-agent and sim-server applica-
tions when running you can download the binaries from http://sim.softgress.com/.
Just download the binaries, extract and execute the run scripts. The results of mea-
surements done by instrumentation and agent will be printed on the console by the
agent and server applications. Agent system measurements are also exposed to JMX.
You can view them by using jconsole (comes with java):

1. start jconsole

2. connect to sim-agent (sim-agent must be running)

3. open MBeans tab

4. select sim.agent->Agent->Attributes

5. click refresh to see updated values or double click any of the values to see a chart
with the history of that value.

3.1.2 Understanding the results of instrumentation

Example of generic method execution measurement

2010-11-12 18:20:48,973 [Thread-3] INFO sim.agent.AgentHandler -
MethodMetricsImpl [methodName=invoke,
className=eu.larkc.plugin.reason.SparqlQueryEvaluationReasoner,
context=, exception=null, endedWithError=false,
beginExecutionTime=1289578818723, endExecutionTime=1289578820508,
wallClockTime=1785, threadUserCpuTime=540, threadSystemCpuTime=40,
threadTotalCpuTime=580, threadCount=1, threadBlockCount=0,
threadBlockTime=0, threadWaitCount=0, threadWaitTime=0,
threadGccCount=1, threadGccTime=193, processTotalCpuTime=810]

Interpretation of method execution measurement

• What method was executed?
eu.larkc.plugin.reason.SparqlQueryEvaluationReasoner.invoke

• How long did this method take to execute (from the moment of calling this
method to the moment of this method returning to the caller)?
1785 ms (wallClockTime=1785)

• Did this method call ended with an uncaught exception?
No (endedWithError=false)

• How many threads did this method create (directly or indirectly)?
1 (threadCount=1)

• How much user cpu time was spent by the thread executing this method?
540 ms (threadUserCpuTime=540)

36 of 53

FP7 – 215535

Deliverable 11.4

• How much system cpu time (cpu time spent by OS to service this method) was
spent by the thread executing this method?
40 ms (threadSystemCpuTime=40)

• Did this thread blocked (waiting for a monitor lock)? If yes, how many times
and how much time did all take?
No. 0 times, 0 ms (threadBlockCount=0, threadBlockTime=0)

• Did this thread waited to be notified by other threads? If yes, how many times
and how much time did all take?
No. 0 times, 0 ms (threadWaitCount=0, threadWaitTime=0)

• During execution of this method, was there a gcc? If yes, how many times and
how much time did all take?
Yes. 1 times, 193 ms (threadGccCount=1, threadGccTime=193)

• How much cpu time was spent by the whole application during the execution of
this method?
810 ms (processTotalCpuTime=810)

• Where does the diference between wallClockTime and processTotalCpuTime
comes from?
processTotalCpuTime indicates cpu time effectively used by this application
(the total time passed when this application was actually scheduled by the OS
to execute). wallClockTime indicates the time ellapsed between start of this
method execution and end of this method execution (it does not differentiate
if half of this time the application was not actually running - not scheduled by
the OS to execute). So it would seem that 975 ms from the total 1785 ms this
application was not running. This is explained by the fact that the machine
where the test was run has only one CPU with one core and during the test
other processes where scheduled by the OS to run.

Example of LarKC specific execution measurements

When using the workflows/foaf.rdf workflow and the default foaf “Frank van Harmelen”
SPARQL query we get these measurements:

2011-01-27 04:05:05,179 [Thread-2] INFO sim.server.HttpCommunicationHandler
-
MethodMetricsImpl [creationTime=1296093873029, methodName=main,
className=eu.larkc.core.Larkc,
context=platformid=022660e2-ea8d-4df7-a0d6-410404ac414c,
tag=platform, name=PlatformStart,
exception=null, endedWithError=false,
beginExecutionTime=1296093873034, endExecutionTime=1296093896403,
wallClockTime=23369, threadUserCpuTime=220, threadSystemCpuTime=80,
threadTotalCpuTime=300, threadCount=4, threadBlockCount=0,
threadBlockTime=0, threadWaitCount=11, threadWaitTime=22899,
threadGccCount=17, threadGccTime=3545, processTotalCpuTime=18560]
2011-01-27 04:05:15,194 [Thread-2] INFO sim.server.HttpCommunicationHandler
-
MethodMetricsImpl [creationTime=1296093903709, methodName=<init>,
className=eu.larkc.core.executor.Executor,

37 of 53

FP7 – 215535

Deliverable 11.4

context=platformid=022660e2-ea8d-4df7-a0d6-410404ac414c,
tag=workflow, name=WorkflowCreate,
workflowid=9ca86c9d-55bd-4e8e-9681-bf6ccb382ce7,
exception=null, endedWithError=false,
beginExecutionTime=1296093903709, endExecutionTime=1296093906923,
wallClockTime=3214, threadUserCpuTime=700, threadSystemCpuTime=40,
threadTotalCpuTime=740, threadCount=34, threadBlockCount=1,
threadBlockTime=166, threadWaitCount=13, threadWaitTime=935,
threadGccCount=1, threadGccTime=610, processTotalCpuTime=2540]
2011-01-27 04:05:20,207 [Thread-2] INFO sim.server.HttpCommunicationHandler
-
MethodMetricsImpl [creationTime=1296093913372, methodName=invoke,
className=eu.larkc.plugin.Plugin,
context=platformid=022660e2-ea8d-4df7-a0d6-410404ac414c,
queryid=4e9972e7-f09d-483e-ad8d-1a4f9bc6ae39,
tag=plugin, pluginName=urn:eu.larkc.plugin.hadoop.FileIdentifier,
name=PluginExecution,
pluginid=da45feee-54a7-4a77-81a1-d8571306f96f,
workflowid=9ca86c9d-55bd-4e8e-9681-bf6ccb382ce7,
exception=null, endedWithError=false,
beginExecutionTime=1296093913372, endExecutionTime=1296093913373,
wallClockTime=1, threadUserCpuTime=0, threadSystemCpuTime=0,
threadTotalCpuTime=0, threadCount=0, threadBlockCount=0,
threadBlockTime=0, threadWaitCount=0, threadWaitTime=0,
threadGccCount=0, threadGccTime=0, processTotalCpuTime=0]
2011-01-27 04:05:20,207 [Thread-2] INFO sim.server.HttpCommunicationHandler
-
MethodMetricsImpl [creationTime=1296093913536, methodName=invoke,
className=eu.larkc.plugin.Plugin,
context=platformid=022660e2-ea8d-4df7-a0d6-410404ac414c,
queryid=4e9972e7-f09d-483e-ad8d-1a4f9bc6ae39,
tag=plugin, pluginName=urn:eu.larkc.plugin.hadoop.HadoopRDFReader,
name=PluginExecution, pluginid=06ade4ea-97ea-4827-9104-0b410ddce05c,
workflowid=9ca86c9d-55bd-4e8e-9681-bf6ccb382ce7,
exception=null, endedWithError=false,
beginExecutionTime=1296093913536, endExecutionTime=1296093914816,
wallClockTime=1280, threadUserCpuTime=160, threadSystemCpuTime=0,
threadTotalCpuTime=160, threadCount=4, threadBlockCount=4,
threadBlockTime=0, threadWaitCount=4, threadWaitTime=141,
threadGccCount=1, threadGccTime=15, processTotalCpuTime=1110]
2011-01-27 04:05:20,208 [Thread-2] INFO sim.server.HttpCommunicationHandler
-
MethodMetricsImpl [creationTime=1296093914853, methodName=invoke,
className=eu.larkc.plugin.Plugin,
context=platformid=022660e2-ea8d-4df7-a0d6-410404ac414c,
queryid=4e9972e7-f09d-483e-ad8d-1a4f9bc6ae39,
tag=plugin, pluginName=urn:eu.larkc.plugin.reason.SparqlQueryEvaluationReasoner,
name=PluginExecution,
pluginid=18821527-6f47-4e8c-95d3-497fdf77ec12,
workflowid=9ca86c9d-55bd-4e8e-9681-bf6ccb382ce7,

38 of 53

FP7 – 215535

Deliverable 11.4

exception=null, endedWithError=false,
beginExecutionTime=1296093914853, endExecutionTime=1296093915708,
wallClockTime=855, threadUserCpuTime=440, threadSystemCpuTime=20,
threadTotalCpuTime=460, threadCount=1, threadBlockCount=0,
threadBlockTime=0, threadWaitCount=0, threadWaitTime=0,
threadGccCount=1, threadGccTime=84, processTotalCpuTime=780]
2011-01-27 04:05:20,209 [Thread-2] INFO sim.server.HttpCommunicationHandler
-
MethodMetricsImpl [creationTime=1296093913106, methodName=handle,
className=eu.larkc.core.endpoint.sparql.SparqlHandler,
context=platformid=022660e2-ea8d-4df7-a0d6-410404ac414c,
queryid=4e9972e7-f09d-483e-ad8d-1a4f9bc6ae39, tag=query, name=QueryTotal,
workflowid=9ca86c9d-55bd-4e8e-9681-bf6ccb382ce7,
exception=null, endedWithError=false,
beginExecutionTime=1296093913106, endExecutionTime=1296093915920,
wallClockTime=2814, threadUserCpuTime=140, threadSystemCpuTime=20,
threadTotalCpuTime=160, threadCount=5, threadBlockCount=2,
threadBlockTime=1, threadWaitCount=5, threadWaitTime=2231,
threadGccCount=2, threadGccTime=99, processTotalCpuTime=2400]

All the above measurements mean that platform took 23.4 seconds to start, created
4 threads and generated 17 garbage collections that took 3.5 seconds (red markings in
the listing). Workflow creation took 3.2 seconds and created 34 threads(blue markings
in the listing). Total Query execution took 2.8 seconds and created 5 threads (green
markings in the listing). Of this 1.3 seconds was spent by HadoopRDFReader plugin,
which created 4 threads and 0.9 seconds was spent by SparqlQueryEvaluationReasoner
which created 1 threads (magenta markings in the listing).

3.1.3 Extending SIM

Defining the classes which should be instrumented can be done in 3 ways:

1. add @sim.instrumentation.annotation.Instrument annotation to a class

@sim.instrumentation.annotation.Instrument
public abstract class Plugin implements MessageListener {
.....
}

2. define a concrete-aspect for sim.instrumentation.aop.aspectj.AbstractMethodInterceptor
into aop.xml

<concrete-aspect name="sim.instrumentation.aop.aspectj.larkc.InstrumentPlugin"
extends="sim.instrumentation.aop.aspectj.AbstractMethodInterceptor">
<pointcut name="methodExecution" expression="within(eu.larkc.plugin.Plugin)
AND execution(* *(..))"/>
</concrete-aspect>

39 of 53

FP7 – 215535

Deliverable 11.4

3. using AspectJ to extend sim.instrumentation.aop.aspectj.AbstractMethodInterceptor
(or define other custom aspects). A good example is
sim.instrumentation.aop.aspectj.larkc.InstrumentPlugin which uses beforeInvoke
and afterInvoke hooks to create an ExecutionFlowContext for the duration of
the execution of the invoke method of the Plugin. In this way, all other instru-
mented methods that will be executed during the invoke method will be part
of the created ExecutionFlowContext. Furthermore, using the JoinPoint from
the beforeInvoke method, information about the name of the executing Plugin
is extracted and placed into the created ExecutionFlowContext.

3.2 Visualization

The visualization module is a web-based, client server application. It can be installed
and used on any computer.

The software programs that need to be installed in order to start using the visual-
ization module are:

1. Apache Tomcat version 7.0.6 or later, or other compatible application server2.

2. MySQL Server version 5.0.243 or later.

The source code for visualization can be downloaded from: https://github.com/
semantic-im/sim-vis. It contains the following:

• MySQLDb

• RestServer

• Visualization_Metrics

• Visualization_Prediction

The steps that need to be done are:

1. Install mysql db server

• http://dev.mysql.com/doc/refman/5.1/en/installing.html

• Create an empty data base with the name “larkc” (default user is “root” and
password is “1111”

• Import sql file: larkc-core-2011-01-28.sql into your database

2. For RestServer:

(a) Run the rest server with the input arguments:
java -cp .;..\lib \jrobin-1.5.9.1.jar;..\lib \org.restlet.jar;..\lib
\rrd4j-2.0.5.jar \Rrd4jJSONServer “path\to \the \RestServer \!rrds”

(b) Add the following dependencies to the project: the .jar files in RestServer
\lib.

2http://tomcat.apache.org/
3http://dev.mysql.com/

40 of 53

FP7 – 215535

Deliverable 11.4

3. Visualization_Metrics and Visualization_Prediction

(a) For Visualization_metrics it is recommended to run Eclipse with GWT
plugin installed.

(b) You should add the external libraries the following dependencies: lib\ofcgwt.jar
and lib\smartgwt.jar.

(c) For now visualization metrics and the prediction page are two separate
projects.

4. Running all the projects:

(a) In order to run the project the mysql server should be running.

(b) Start RestServer

(c) Run Visualization components (Metrics and Prediction) - recommended to
use Eclipse to run them because it is easier to debug them.

3.3 Relevance Feedback

3.3.1 Compiling the application

This module has two main components - off-line training and on-line prediction.
The off-line training can be downloaded from https://github.com/semantic-im/
sim-rf/RFJava.

Requirements:

1. Netbeans IDE version 7.0 (http://netbeans.org/index.html)

2. Java jdk1.6.0_22.

To run the off-line training one should follow the steps described below:

1. Download the source code from https://github.com/semantic-im/sim-rf.

2. Start Netbeans and choose “Open Project”. Choose the directory where you have
downloaded the source code - it should be RFJava.

3. The special dependencies that may be needed are found in the lib directory of
the project (but no special settings are needed. The code should compile without
adding the dependencies).

4. Run the project from the Netbeans IDE.

5. The screen depicted in Figure 3.1 should appear. It has three tabs – “Load”
(loads a data set for training) , “Machine Learning” (applies a machine learning
algorithm on the loaded data) and “Test” (applies the trained machine learning
model on a test query).

41 of 53

FP7 – 215535

Deliverable 11.4

3.3.2 Running an example

The first step that needs to be done for the off-line training module is to load some
data that will be used for training. We have generated some sample data from the
workflows that have been run. The sets are included in the “arff” directory. In order
to load the data, one needs to select the “Load” tab and from there press the button
“Choose data source”. A popup dialog will be displayed. It gives the possibility to
choose the arff file.

Two files are available “metricsMethod.arff” (used by “Clustering and regression” or
by “Kernel regression” methods from the “Machine learning” tab) and “query_allWF.arff”
(that can be used by “Best configuration” method from the “Machine learning” tab).

After the file “metricsMethod.arff” is loaded, the application looks like in Figure
3.1.

Figure 3.1: Data loading in the off-line RF training application

The second step consists in choosing the machine learning method that is applied
on the loaded data. For this, select the “Machine Learning” tab. For example if the
file “metricsMethod.arff” has been loaded, then one should check the “Clustering and
Regression” item. Then press the button “Build prediction model”. When the training
is finished a message will be displayed in the “Status” text area. If the training is
successful the model can be saved by pressing the button “Save model” and a popup
dialog will allow the saving of the model on the disk. Figure 3.2 shows the described

42 of 53

FP7 – 215535

Deliverable 11.4

process. When performing steps one and two mentioned previously, an important

Figure 3.2: Building and saving a RF machine learning model

remark is that the model can be applied automatically (it does not need to be loaded).
For example when choosing the “Test” tab one is able to test the model on new input
data that is in the form of a SPARQL query (the text area “Query” from the interface).
By pressing the “Predict” button the trained model is applied on the new query and the
results are displayed in the text area below. Figure 3.3 shows the prediction results.

Steps one and two can be skipped if one wants to directly test a previously stored
model. For example, consider we have previously saved a “Best configuration” model.
This model can be loaded in the “Test” tab by pressing “Load prediction model” button
and choosing the file saved on the disk. If the model is loaded successfully a message
is displayed in the “Status” text box. Next the model can be applied on a test query
by pressing the “Predict” button. The results are displayed in the text area below.
Figure 3.4 shows the prediction results.

43 of 53

FP7 – 215535

Deliverable 11.4

Figure 3.3: Using the RF model for predicting the parameters of a query.

44 of 53

FP7 – 215535

Deliverable 11.4

Figure 3.4: Loading and testing a Best configuration RF model

45 of 53

FP7 – 215535

Deliverable 11.4

4. Using SIM tools for instrumenting and monitoring LarKC
plugins and workflows

4.1 Instrumented Workflows

The experiments we have done so far are based on the monitoring and instrumentation
of the following workflows, including the constituents plugins and the queries used by
these workflows:

• LLD_REASONIG - consisted of the composition of two plug-ins: LLDReasoner,
SOStoVBtransformer

• QUERY_EXPANSION – consists in the composition of the following plug-ins:
RISearchPlugin , QueryExpansion, LLDReasoner, SOStoVBTransformer.

• CRIONReasoner – comprises the plug-ins: CRIONReasonerPlugin, SOStoVB-
transformer

• FactForge – includes the plug-ins: RDFReader, SparqlQueryEvaluationReasoner,
NewFileIdentifier, SPARQLToTriplepatternTransformer, SindiceIdentifier

• KeywordReasoner2 – KeywordReasonerPlugin2, SOStoVBtransformer

• KeywordReasoner3 – KeywordReasonerPlugin3, SOStoVBtransformer

• OWLAPIReasoner – OWLAPIReasonerPlugin

• PIONReasoner – PIONReasonerPlugin, SOStoVBtransformer

• Simple – RDFReader, SparqlQueryEvaluationReasoner, NewFileIdentifier

• Sindice – RDFReader, SparqlQueryEvaluationReasoner, NewFileIdentifier, SPAR-
QLToTriplepatternTransformer, SindiceIdentifier

• SPARQLDLReasoner – SPARQLDLReasonerPlugin

• TripIt – TripItPlugin

In order to capture several aspects for visualization and monitoring we have arti-
ficially varied the plug-ins that formed the workflows above and the Executor. The
variations consist in adding additional delay (by Thread.sleep) and adding code to
increase the CPU load.

We have generated configurations of the same workflows with these modifications
in the plug-ins or in the Executor. Taking the LLD_REASONIG workflow as an
example, the following configurations were obtained:

• w_01 – the workflow was run as it is, with no modifications;

• w_02 – the workflow was run with an increase in execution time for Execu-
tor (path is platform\src\main\java\eu\larkc\core\executor\Executor.java)(no
modifications at plug-in level); The method that we have modified was: exe-
cute(SetOfStatements query, String pathId). The platform should be recompiled
after the modification.

46 of 53

FP7 – 215535

Deliverable 11.4

• w_03 – the workflow was run with an increase in CPU load for Executor (no mod-
ifications at plug-in level); We have modified the method execute(SetOfStatements
query, String pathId) from Executor.java. The platform should be recompiled
after the modification.

• w_04 – the workflow was run with an additional execution time added to the
LLDReasoner plug-in (plugins\LLDReasoner\src\main\java\eu\larkc\plugin
); In method ‘invokeInternal(SetOfStatements input)’ we have added the code:

try {
//Pause for 1 seconds
Thread.sleep(1000);
} catch (InterruptedException ex) {
ex.printStackTrace();
}

The plug-in should be recompiled after the modification.

• w_05 – the workflow was run with an increase in CPU load for the LLDReasoner
plug-in; In the method ‘invokeInternal(SetOfStatements input)’ we have added
the code:

final int NUM_TESTS = 1000;
int milliseconds = 500;
for (int i = 0; i < NUM_TESTS; i++) {
long sleepTime = milliseconds*100000L; // convert to nanoseconds
long startTime = System.nanoTime();
while ((System.nanoTime() - startTime) < sleepTime) {}
}

The plug-in should be recompiled after the modification.

• w_06 – the workflow was run with an increase in CPU load for both plug-
ins (method invoke from eu.core.larkc.plugins.Plugin); The platform should be
recompiled after the modification.

4.2 Visualization for instrumented workflows

The following metrics are used by the visualization component to graphically display
to the user the monitoring information about instrumented queries executions, plu-
gins, workflows and platform: QuerySizeInCharacters, QueryNamespaceNb, Query-
VariablesNb, QueryDataSetSourcesNb, QueryOperatorsNb, QueryResultOrderingNb,
QueryResultLimitNb, QueryResultOffsetNb, QueryResultSizeInCharacters, QueryTo-
talResponseTime, QueryProcessTotalCPUTime, QueryThreadTotalCPUTime, Query-
ThreadUserCPUTime, QueryThreadSystemCPUTime, QueryThreadCount, QueryThread-
BlockCount, QueryThreadBlockTime, QueryThreadWaitCount, QueryThreadWait-
Time, QueryThreadGccCount, QueryThreadGccTime, QueryContextInstanceFrom-
Workflow, WorkflowNumberOfPlugins, WorkflowTotalResponseTime, WorkflowPro-
cessTotalCPUTime, WorkflowThreadTotalCPUTime, WorkflowThreadUserCPUTime,
WorkflowThreadSystemCPUTime, WorkflowThreadCount, WorkflowThreadBlockCount,

47 of 53

FP7 – 215535

Deliverable 11.4

WorkflowThreadBlockTime, WorkflowThreadWaitCount, WorkflowThreadWaitTime,
WorkflowThreadGccCount, WorkflowThreadGccTime and all the generic system and
method metrics (e.g WaitCPUTime, UserCPULoad,etc.).

The visualization results are based on information provided by the instrumentation
and monitoring module. Figure 4.1 presents the visualization of the plugins (LLDRea-
soner, SOStoVBtransformer) corresponding to a selected workflow instance and a set
of queries that were executed. It can be observed that for a single workflow there are
many uniquely identified instances.

Figure 4.1: Plugins and queries corresponding to the LLD_REASONIG workflow

Figure 4.2 illustrates the obtained metrics for a selected query.
Figure 4.3 introduces a new version of the Visualization component that uses Lif-

eray portal platform as the application aggregator and content management system.
The metrics that are stored as time-series values are represented as a separate portlet
that is integrated into the portal environment according to JSR-168/JSR-286 specifi-
cation. As future development we are intended to develop new visualization function-
alities and to adapt the existing parts to the portlet specification.

4.3 Relevance Feedback for instrumented workflows

Currently, the relevance feedback component considers the following metrics: Query-
SizeInCharacters, QueryNamespaceNb, QueryVariablesNb, QueryDataSetSourcesNb,
QueryOperatorsNb, QueryResultOrderingNb, QueryResultLimitNb, QueryResultOff-
setNb, QueryResultSizeInCharacters, QueryTotalResponseTime, QueryProcessTotal-
CPUTime, QueryThreadTotalCPUTime, QueryThreadUserCPUTime, QueryThreadSys-
temCPUTime, QueryThreadCount, QueryThreadBlockCount, QueryThreadBlockTime,
QueryThreadWaitCount, QueryThreadWaitTime, QueryThreadGccCount, QueryThread-
GccTime, QueryContextInstanceFromWorkflow, WorkflowNumberOfPlugins, Work-

48 of 53

FP7 – 215535

Deliverable 11.4

Figure 4.2: Query metrics

Figure 4.3: Metrics that are stored as time-series values. Portlet representation.

49 of 53

FP7 – 215535

Deliverable 11.4

flowTotalResponseTime, WorkflowProcessTotalCPUTime, WorkflowThreadTotalCPUTime,
WorkflowThreadUserCPUTime, WorkflowThreadSystemCPUTime, WorkflowThread-
Count, WorkflowThreadBlockCount, WorkflowThreadBlockTime, WorkflowThread-
WaitCount, WorkflowThreadWaitTime, WorkflowThreadGccCount, WorkflowThread-
GccTime.

We will exemplify the work on an arff file that contains three workflow configura-
tions (w_01, w_02, w_03). For these workflows we run two types of queries:

1. Example of type 1 queries:

SELECT ?s ?p ?o WHERE {
{?s ?p ?o . ?s ?p "myopia"}
}

2. Example of type 2 queries:

SELECT ?s ?p ?o WHERE {
{ ?s ?p ?o . ?s ?p "trauma"}
UNION {?s ?p ?o . ?s ?p "diabetes"}
UNION {?s ?p ?o . ?s ?p "APRAXIAS" }
UNION {?s ?p ?o . ?s ?p "level;" }
UNION {?s ?p ?o . ?s ?p "superoxide" }
UNION {?s ?p ?o . ?s ?p "envenomations" } }

For w_01 we run 248 queries, for w_02 we have run 250 queries and for w_03 we run
192 queries. Most of the queries were similar for the three workflow configurations.

On this data we wanted to find the best workflow configuration for a given input
query and for it predict some output metric values.

Given the instrumentation data generated when running the queries for the three
workflow configurations we have applied a clustering step. Two clusters were formed,
the first contained 393 instances and the second contained 297 instances. We noticed
that the two clusters correspond to the two types of queries we have given. The
clustering was done based on the metrics collected for the SPARQL queries.

Inside each cluster we performed another grouping operation based on the workflow
configuration parameters. This resulted in:

• for cluster 1: 93 instances for w_01, 151 instances for w_02 and 149 instances
for w_03.

• for cluster 2: 99 instances for w_01, 99 instances for w_02 and 99 instances for
w_03.

Also, for each cluster we have build a prediction model (using linear regression and
kernel regression). Next, we have applied our model on several test input queries. For
example, for the test query:

SELECT ?s ?p ?o
WHERE { { ?s ?p ?o . ?s ?p "myopia"}
UNION {?s ?p ?o . ?s ?p "yellow fever"}
UNION {?s ?p ?o . ?s ?p "APRAXIAS" }
UNION {?s ?p ?o . ?s ?p "level;" }
UNION {?s ?p ?o . ?s ?p "superoxide" }
UNION {?s ?p ?o . ?s ?p "envenomations" } }

50 of 53

FP7 – 215535

Deliverable 11.4

The suggested best configuration was with w_01 (which is correct, as w_01 runs in
a minimum amount of time and has a low CPU load). Also, for it the predicted total
execution time was of 2000.2553795891301 ms - which was close to the actual execution
time. More examples and test queries can be experimented using the demo version.

51 of 53

FP7 – 215535

Deliverable 11.4

5. Conclusion

This deliverable reports on the development, since the first release, of the instrumen-
tation and monitoring solution for LarKC, which we call Semantic Instrumentation
and Monitoring (SIM). We introduced and detailed the updates of each component,
namely instrumentation mechanism, profiling agents, server, visualization and rele-
vance feedback, in terms of architecture and implementation. The installation and
user guide provided in [1] was updated to reflect the latest developments, providing
details on how to install and use SIM components, and also how to instrument LarKC
plug-ins and workflows. SIM is also well integrated in the overall LarKC architec-
ture and platform, updates on LarKC instrumentation and monitoring being released
regularly with the LarKC platform. The current version of SIM instrumentation and
monitoring, via the instrumentation mechanism supports a large set of metrics, includ-
ing methods, system, atomic and compound metrics. The profiling agents support the
collection and buffering of data received from the instrumentation mechanism. The
server component stores the monitoring data in RDF and implements a wide range
of compound metrics generations methods. The instrumentation and monitoring so-
lution also includes advanced visualization and relevance feedback functionality uses
the metrics collected by instrumentation, agents and stored on the server. We also
reported on the set of workflows and their plugins that are instrumented and how visu-
alization and relevance feedback components are using the monitoring data obtained
by running these workflows and plugins.

52 of 53

FP7 – 215535

Deliverable 11.4

References

[1] I. Toma, R. Brehar, S. Nedevschi, M. Chezan, S. Bota, I. Giosan, M. Negru,
and A. Vatavu, “Instrumentation and monitoring platform - design, architecture
specification and first prototype,” LarKC Project Deliverable, Tech. Rep. D11.2,
2011.

[2] I. Toma, R. Brehar, S. Bota, M. Negru, A. Vatavu, and M. Chezan, “Larkc metrics
ontology,” LarKC Project Deliverable, Tech. Rep. D11.1.2, 2010.

[3] R. Brehar, I. Giosan, M. Negru, A. Vatavu, I. Toma, and C. Vicas, “Visualization
tool and relevance feedback for instrumentation and monitoring,” LarKC Project
Deliverable, Tech. Rep. D11.3, 2011.

53 of 53

