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1. Introduction

LarKC is developing a platform that enables the development of large-scale reasoning
applications using and combining techniques from various Semantic Web related re-
search fields. The plugable architecture of LarKC enables the interested LarKC users
to test their ideas for doing reasoning. It allows them to intergate and deploy their
own components, known as plug-ins in LarKC terminology, in the plaftorm, to flex-
ibility connect them in order to build workflows, to run and to test them. The last
feature is supported by a set of tools built by WP11 that enables instrumentation
and monitoring of LarKC plugins, workflows and platform. We call this tool set SIM
- Semantic Instrumentation and Monitoring. SIM enables the instrumentation and
monitoring of LarKC applications in particular and any java distrubuted system in
general. It offers the means for developers to specify the metrics of interest, to in-
trument the code, to collect and observe how well the system and its components are
performing. For example, LarKC developers can find out, using SIM how performant
their plugins and workflows are, how many resources they consume, how much data
they consume and produce, etc. In [1], we described the first version of SIM, the
instrumentation and monitoring solution developed in LarKC. There are five major
components that are part of SIM: instrumentation code, agents, server, visualization
and relevance feedback. While the first two (i.e. instrumentation code and agents)
are responsible for setting up the process and collecting the monitoring data, the last
two (i.e. visuzaliation and relevance feedback) are processing the raw monitoring data
enabling the end user to take full advantage of it. More preciely, the visuzalization
component displays monitoring data collected from the LarKC platform, plug-ins and
workflows and the relevance feedback component learns uses data mining techniques
and performs machine learning on top of the monitoring data. In this deliverable we
describe the advances and latest developments of the two SIM components that are
consuming the monitoring data namely visualization and relevance feedback.

This deliverable is organized as follows. Chapter 2 describes the final architecture
and the technical implementation of the visualization component. It provide details on
the front-end and back-end parts of the visuzalization as well as on the technologies
used to implement it. Chapter 3 presents the mathematical model and algorithms
that are implemented as part of the relevance feedback component. Chapter 4 revistis
the scenarios proposed in [2] by specifying the input and output metrics on which the
relevance feedback will operate. The architecture and the technical implementation
details of the relevance feedback component are presented in Chapter 5. Chapter 6
and Chapter 7 contain a basic end user guide on how to use the visuzalization and
relevance feedback tools. Finally, Chapter 8 concludes the deliverable.
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2. Visualization and Analysis Architecture

2.1 Overall specification

Our visualization module is responsible for (1) displaying data and metrics about the
LarKC platform, plug-ins and workflows and (2) for sending input metrics to the rele-
vance feedback module and displaying the results provided by the relevance feedback.
The visualization is a web-based, client-server application with several modules for
representing real-time and historical data, composed of atomic and compound metrics
about:

• LarKC platform in general.

• Queries that were passed to the LarKC platform.

• Workflows used to solve the queries.

• Plug-ins that compose the workflows.

Figure 2.1 describes the general architecture of the visualization framework.

Figure 2.1: Visualization Architecture

2.2 Components

The visualization module is composed by the following main components:
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Client-Side Component

Represents the front end part that runs in the end user’s web browser as a rich con-
tent AJAX application. For the client-side component implementation we choose
Google Web Toolkit (GWT). By using GWT the front end application is written en-
tirely in Java and deployed as a highly optimized JavaScript application. Some of the
advantages of using GWT as the main development environment for the client-side
component are summarized below:

• The Java code is deployed as a highly optimized JavaScript

• Cross Browser support

• External libraries for data visualization can be easily integrated into GWT.

• Communication support with Server Side logic: RPC and JSON

• Easy development and debug. The GWT source code can be written entirely in
Java.

• Asynchronous call support.

• Web application performance and fast code execution

One problem with GWT is that GWT was meant to be used as a standalone web
application development platform, it was designed to work with a single HTML page
while traditional web applications have several HTML pages in them. Another issue
is that GWT does not allow the loading of multiple modules into a single page and
does not integrate well with existing HTML elements. To overcome this problems the
solution employed was the use some of the GWT best practices listed below:

• Model View Presenter pattern - MVP

• History Management

• Application Controller

• UI Binding

In the following we will describe these concepts.

Model View Presenter

One of the main advantages of the MVP (Model View Presenter) pattern is that it
decouples development in a way that allows multiple developers to work and test the
web application simultaneously. A MVP application has four main components:

• Model - A model encompasses business objects

• View - A view contains all of the UI components that make up an application.
This includes any tables, labels, buttons, text boxes, etc... Views are responsible
for the layout of the UI components and have no notion of the model.Switching
between views is tied to the history management within the presentation layer.
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• Presenter - A presenter contains all the logic of the application, including history
management, view transition and data sync via Remote Procedure Calls back to
the server. For every view there exists a presenter to drive the view and handle
the events that are sources by the user interface widgets within the view.

• Application Controller - The application controller handles logic that is not spe-
cific to any presenter and instead resides at the application layer. This compo-
nent contains the history management and view transition logic.

The interaction and relationship between these components is presented in figure 2.2

Figure 2.2: Interaction and relationship between MVP components

History Management

Usually, Ajax based applications don’t interact with the browser history as the
static pages. This may be frustrating for users when, for example, they want to
navigate back to previous pages, because an Ajax application usually is a single page.
Therefore we integrated GWT’s history mechanism that responds to this problem. For
each Visualization page that supports history management, the application generates
a unique history token that is saved in browser history as a URL sting, beginning with
’#’. For example we can access the Workflows User Interface by adding "#workflows"
to the end of the URL: http://localhost/Visualization.html#workflows.

Application Controller

We need a separate Application Controller class to handle logic beside any presen-
ter at a higher layer of our application. Application Controller class includes history
management, application event handling and logic to connect other application in-
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stances.

UI Binders

Instead of writing user interfaces through code, UiBinder represent a more natural
and simple way to specify this UI in a more understanding declarative XML template.
Some advantages of using UIBinder are:

• UIBinders provide a better separation between User Interface and Application
Behavior (Code).

• UI interfaces are easier to implement with XML, HTML and CSS than Java
code.

• Works well with GWT’s il18n internationalization support.

• UIBinders are easier to maintain and reuse in other applications.

• Lightweight HTML elements

However there are cases when programmatic specification of a widget is used, for
example in table widgets, tree menu etc. Each UiBinder file has an associated class
that allows programmatic access to the widgets.

Other Visualization Libraries Used
In order to display the relevant metrics of the Larkc Instrumentation and Monitoring
architecture we are currently using two other libraries that are compatible with the
google web toolkit:

• Open Flash Charts GWT provides a simple to use chart widget for GWT
based on Open Flash Chart 2. The library includes the needed flash insertion,
update and manipulation methods for the chart widget. It also includes a POJO
model for the chart elements and components that assist in the generation of the
JSON to provide the correct chart data for OFC 2.x API. Included Charts are:
pie charts , bar charts, 3D bar charts, line charts, area charts, scattered charts,
etc.

• SmartGWT is a GWT-based framework that allows you to not only utilize
its comprehensive widget library for an application’s user interface, but also
ties these widgets in with your server-side for data management. Smart GWT
provides an end-to-end application architecture, from UI components to server-
side transaction handling. Each data widget can be connected transparently to
a data source without using a data object model, like in GWT.

System Architecture

The Visualization System Architecture is presented in figure 2.3. There are several
categories of classes:

• Visualization User Interface and Associated UI Binder contain the main applica-
tion container in which all other UI widgets are included based on user actions.

• View Classes (Platform, Workflows and Prediction) - implement User Interface
widgets. Each UI Class may have an associated UI Binder.

12 of 44



FP7 – 215535

Deliverable 11.3

Figure 2.3: Visualization Architecture - Class Diagram

• Presenter Classes (PlatformPresenter, WorkflowsPresenter and PredictionPre-
senter) - are responsible for implementing the logic of the associated UI Widgets.
The presenter classes are instantiated in the application controller once a new
HistoryChangeEvent has been detected.

• Model Classes (Metric Entry) encompass business objects, in our case we use
Metric Entries as model objects. Normally. Model classes are passed to the UI
Widgets as model Data.

• Application Controller Class handles logic at the application layer.

• Visualization - represents the main entry point of the application as each GWT
application must contain an entry class. At this level the main visualization
container and application controller are initialized.

Visualization Scenarios

For the visualization interface we have taken into account the following main sce-
narios:

• Display all metrics for the current platform (figure 2.4)

• Display all plugins for a given Workflow
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• Display all queries for a given Workflow

• Display metrics for a selected query

Figure 2.5 presents a sequence diagram showing the interaction between Workflows
user interface and server for the last three scenarios.

Figure 2.4: Visualization Architecture - Class Diagram
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Figure 2.5: Visualization Architecture - Class Diagram
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Server-Side Component

The server-side component includes a controller of business logic which coordinates
requests from clients, as well as the data layer queries and responses. Based on client
requests and data base (data layer) query results, actions are carried out by the server.
Two mechanisms for client-server communication can be used: by making GWT Re-
mote Procedures Calls or by retrieving JSON Data via HTTP requests.

RPC based Communication

The GWT Remote Procedure Call framework makes it easy for the client and server
components of a web application to exchange Java objects over HTTP. The server-side
code that gets invoked from the client is often referred to as a service. The implemen-
tation of a GWT RPC service is based on the well-known Java servlet architecture.
Within the client code, we use a proxy class to make calls to the service. GWT will
handle serialization of the Java objects passing back and forthŮthe arguments in the
method calls and the return value. When setting up GWT RPC, we focus on three
elements involved in calling procedures running on remote servers.

• the service that runs on the server (the method being called)

• the client code that invokes the service

• the Java data objects that pass between the client and server

Both the server and the client have the ability to serialize and de-serialize data so
the data objects can be passed between them as ordinary text. An important feature
of GWT RPC communication is that GWT provides an embedded servlet container
(Jetty) that host the servlets containing the RPC service implementation, thus al-
lowing one to test and debug the application even in development mode. To set this
up, one must add <servlet> and <servlet-mapping> elements to the web application
deployment descriptor (web.xml) and point to the implementation class.

<!-- Servlets -->
<servlet>
<servlet-name>PredictionServiceImpl</servlet-name>
<servlet-class>ro.utcluj.larkc.visual.server.PredictionServiceImpl
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>PredictionServiceImpl</servlet-name>
<url-pattern>/visualization/prediction</url-pattern>

</servlet-mapping>

In our implementation we use GWT RPC in the prediction and relevance feedback
module. Figure 2.6 presents the Java classes involved in the client-server communica-
tion through the GWT RPC mechanism.

JSON Based Communication

We use a RESTful framework (Restlet) on the server in order to handle asyn-
chronous requests and to encapsulate objects into JSON (JavaScript Object Notation)
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Figure 2.6: GWT RPC for Prediction Module

format. A JSON data interface is developed to allow maximum flexibility in build-
ing components that are using Instrumentation and Relevance Feedback results. By
providing data in JavaScript Object Notation (JSON) format we allow other LarKC
plug-ins to use our information in a simple and standardized way.

Visualization API
In order to get access to the server data, each HTTP request should respect the

following the following format:
http://SERVER_ADDRESS:8182/url?GET_PARAMETERS
Where:

• SERVER_ADDRESS - is the address of the Visualization Service that handles
the HTTP Request.

• GET_PARAMETERS - includes the GET parameters encoded in the URL ad-
dress. Based on the parameters’ type and value a corresponding JSON object
is returned to the client. Query parameters are represented in ?Name=Value
format.

We used different types of parameters based on the desired results. For example, if
the Visualization Server resides on the localhost, then a query with the following URI
might be composed:
http://localhost:8182/test?dbtype=mysql&command=getworkflows

Bellow we summarize the actual query parameters:

• dbtype: the type of database to be used.

• values:

– dbtype=mysql - requesting use of MySQL database
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– dbtype=rrd - requesting use of RRD database

Working with RRD Databases:

• rrd : the RRD table name.

– values: rrd=DBNAME, where DBNAME could have one of the follow-
ing values: IOIn, IOOut, IRQPercent, IRQTime, IdlePercent, IdleTime,
SwapIn, SwapOut, ,ysPercent, SysTime, SystemLoadAverage, SystemOpen-
FileDescriptorCount, ,otalSystemFreeMemory, TotalSystemUsedMemory, To-
talSystemUsedSwapSpace„serPercent, UserTime, WaitPercent, WaitTime

• start: Specifies the start time stamp of the first Metric Value to return.

– Example: start=1291807946100

• end: Specifies the end time stamp of the last Metric Value to return.

– Example: end=1291807950000

• resolution: the sampling resolution.

– Example: resolution=1

The following example shows a HTTP request to get all metric values between a
start and an end time stamp at a resolution of 1.
http://localhost:8182/test?dbtype=rrd&rrd=TotalSystemUsedMemory&start=1291807946100
&end=1291807950000&resolution=1

The sample response is encapsulated in JSON format:

[
{"ts":1291807946100,"value":1251167.04},
{"ts":1291807946400,"value":1251167.04},
{"ts":1291807946700,"value":1251167.04}
...
]

Where:

• ts - is the metric timestamp

• value - represents the metric’s value.

Working with MySQL Databases:

• command: a command specifying the sql query to be executed.

– values

∗ command=getworkflows - list all workflows from the current platform
∗ command= getplugins&idworkflow=ID - list all plugins corresponding

to a workflow with a given ID
∗ command=getqueries&idworkflow=ID - list all queries corresponding

to a workflow with a given ID
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∗ command=getquerymetrics&idquery=ID - list all metrics correspond-
ing to a query with a given ID

• tablename: the mysql database table name to be used.

– Example: tablename=plugins - uses plugins table.

The following example shows a HTTP request to get all metric from MySQL
database for a query with the ID=1:
http://localhost:8182/test?dbtype=mysql&command=getquerymetrics&idquery=1

The result JSON has the following form:

[{"MetricName":"QueryTimestamp",
"MetricValue":"2011-01-18 14:50:37",
"Timestamp":"2011-01-18 14:50:37.0"},
{"MetricName":"QueryContent",
"MetricValue":"PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?name1
WHERE {?person1 foaf:knows ?person2 .
?person1 foaf:name ?name1 . ?",
"Timestamp":"2011-01-18 14:50:37.0"},
...
]

Data Layer Component

For data persistence the visualization interacts with two kinds of databases:

• Relational DB: MySQL database - permits to create a consistent, logical rep-
resentation of metrics and other relevant features. The MySQL queries and
responses are coordinated by the server through the JDBC connector.

• RRD database: able to store time-series values. In order to handle this type of
data we use the RRDTool component.

MySQL database

The relational data base schema we propose is described in Figure 2.7.
In the defined model, the “Platforms” table stores data about each instance of the

platform that has been instrumented (a unique identifier is provided to each platform).
Each platform has a list of workflows that have been run by it and the connection
between the platform and the workflows is done via the table “Platform_Workflows”.

Each workflow can be run for a query (also uniquely identified) or more queries
and the linking is made by “Queries_Workflows” table.

The relation between the list of plug-ins and a workflow for which they are run is
done via the table “Workflows_Plugins”. The description of plugins is stored in table
“Plugins” and the description of workflows is stored in table “Workflows”.

The information about metrics is collected in table “Metrics” that lists the names
of all the metrics and “MTypes” that contains the types of metrics (like atomic,
compound, query metric, workflow metric, plug-in metric, etc). The values of the
metrics are stored in the tables: “Platforms_metrics”, “Workflows_Metrics”, “Plug-
ins_Metrics”, “Queries_Metrics”.

RRD database
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Figure 2.7: MySQL Relational Database Schema

An important aspect of monitoring is the ability to view real time data, such as the
processor load, memory and other resource utilization etc. This type of data can best
be represented as a time series. We cannot, however, continuously store such data,
because the storage size will continually increase. Therefore, only relatively recent
data should be stored. Old data should be aggregated. The de facto standard for high
performance storage and access to such data is RRDTool1.

A RRD database (which in the usual DBMS parlance would be best described as
just a table) contains one ore more data series, but all of them must be sampled at the
same time points (i.e. there is a single time stamp column, and any number of value
columns.) The number of the entries in the table is limited to a configurable value.
Besides the values themselves, the database can also contain aggregated (archived)
data. Archived data is obtained by applying an aggregation function (such as AVER-
AGE, MAX, MIN) on accumulated data. The number of aggregated entries is also
fixed and configurable.

Because all the columns must share the same time stamp, and we chose to use mul-
tiple databases, each database containing a single data column, corresponding to one
atomic metric. Currently, we have the following databases: IdlePercent, IdleTime,
IOIn, IOOut, IRQPercent, IRQTime, SwapIn, SwapOut, SysPercent, SystemLoad-
Average, SystemOpenFileDescriptorCount, SysTime, TotalSystemFreeMemory, Total-
SystemUsedMemory, TotalSystemUsedSwapSpace, UserPercent, UserTime, WaitPer-
cent, WaitTime. More databases can be created as needed.

RRDTool is a C and script based application. In order to use RRD from Java we
needed a Java based implementation. Currently there are two such implementation
and they are almost equivalent. The first one is RRD4J2 distributed under the Apache

1http://www.mrtg.org/rrdtool
2https://rrd4j.dev.java.net/

20 of 44



FP7 – 215535

Deliverable 11.3

2.0 license and the second one is JRobin3 distributed under the LGPL license. Because
they are similar we provided interfaces for both of them.

Our interface allows both writing data into the RRD and reading data from it.
Writing data is straight-forward, and is called directly from the server code. Data
reading (publishing) is done using a RESTlet component4. The data is transmitted
using the JavaScript Object Notation (JSON5). The object is an array, containing time
stamp – value pairs.

Figure 2.8: RRD access reading interface

The interaction between the main visualization modules and the users is presented
in figure 2.9.

3http://www.jrobin.org/index.php/Main_Page
4http://www.restlet.org/
5http://www.json.org/
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Figure 2.9: Visualization Flowchart
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3. Relevance Feedback Theoretical Background

In order to define the mathematical model of the relevance feedback module we have
considered several data mining algorithms. We will particularly refer to:

• Data preprocessing / analysis using principal component analysis and correlation
based feature selection

• Machine learning using clustering and regression and multivariate data analysis
using kernel canonical correlation analysis.

A mathematical model for the relevance feedback component is defined and pre-
sented in figure 3.1. The relevance feedback problem is formalized by considering a set
of input metrics derived from SPARQL information and plugins and a set of output
metrics referring to those resources that are measured and monitored. Relevance feed-
back module should take the values for the input metrics and find a relation between
them and the output metrics.

Figure 3.1: Relevance Feedback Model

Consider the following notations:

• The set of input metrics: I = I1, ..., In

• The set of output metrics: O = O1, ..., Om

• The measurements/observations obtained from instrumentation and monitoring
module are a matrix with p instances:

I11 I12 ... I1n O11 O12 ... O1m

I21 I22 ... I2n O21 O22 ... O2m

... ... ... ... ... ... ... ...
Ip1 Ip2 ... Ipn Op1 Op2 ... Opm


Another notation:

Inst11 Inst12 ... Inst1u
Inst21 Inst22 ... Inst2u
... ... ... ...

Instp1 Instp2 ... Instpu

 , u = m+ n
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Several operations can be applied to this mathematical input. First a data analysis
or preprocessing can be carried out. Its role is to eliminate irrelevant features or to
select the most relevant ones(CFS, PCA). Then, a function that defines the relation
between input and output metrics can be defined (in our approach we use clustering
plus regression or KCCA).

3.1 Principal component analysis

Principal component analysis (PCA) is one of the most valuable results from applied
linear algebra. PCA is used abundantly in all forms of analysis in data mining because
it is a simple, non-parametric method of extracting relevant information from confus-
ing data sets. PCA is a way to identifying patterns in data, expressing the data in
order to highlight the correlations such as similarities and dissimilarities. It is impor-
tant because it’s hard to visualize and make computations with the patterns of high
dimensional data. The advantage is the data compression by reducing the number of
dimensions without hopefully much losing of data information.

Principal component analysis (PCA) is a mathematical procedure that uses an
orthogonal transformation to convert a set of correlated variables into a set of values
of uncorrelated variables called principal components. It is used for dimensionality
reduction, more precisely it allows us to compute a linear transformation that maps
data from a high dimensional space to a lower dimensional space. The goal of PCA
is to reduce the dimensionality of the data while retaining as much as possible of the
variation present in the original dataset.

The first principal component has as high a variance as possible (accounts for as
much of the variability in the data as possible), and each succeeding component in
turn has the highest variance possible under the constraint that it be orthogonal to
the preceding components. The best low-dimensional space can be determined by
the "best" eigenvectors of the covariance matrix of variables (i.e., the eigenvectors
corresponding to the largest eigenvalues also called "principal components").

We use PCA for selecting the most relevant input metrics from the set I = I1, ..., In
previously defined. The data that is analyzed for metrics dimensionality reduction
refers to the measurements/observations from the matrix Inst. We keep those metrics
that have the largest eigenvalues and we project all the data on the selected dimensions.

3.2 Correlation based feature selection

Feature selection, also known as variable selection, feature reduction, attribute se-
lection or variable subset selection, is the technique of selecting a subset of relevant
features for building robust learning models. Feature selection algorithms typically
fall into two categories: feature ranking and subset selection. Feature ranking ranks
the features by a metric and eliminates all features that do not achieve an adequate
score. Subset selection searches the set of possible features for the optimal subset.

Feature subset selection is the process of identifying and removing as much of
the irrelevant and redundant information as possible. Machine learning algorithms
differ in the amount of emphasis they place on feature selection. At one extreme are
algorithms such as the simple nearest neighbor learner which classifies novel examples
by retrieving the nearest stored training example using all the available features in its
distance computations. Towards the other extreme lie algorithms that explicitly try
to focus on relevant features and ignore irrelevant ones.
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The CFS algorithm is a heuristic for evaluating the worth or merit of a subset
of features. This heuristic takes into account the usefulness of individual features
for predicting the class label along with the level of inter-correlation among them.
The hypothesis on which the heuristic is based can be stated: Good feature subsets
contain features highly correlated with (predictive of) the class, yet uncorrelated with
(not predictive of) each other.

The purpose of feature selection is to decide which of the initial features to include
in the final subset and which to ignore. Various heuristic search strategies such as hill
climbing and best are often applied to search the feature subset space in reasonable
time. CFS starts from the empty set of features and uses a forward best first search
with a stopping criterion of five consecutive fully expanded non-improving subsets.

In our approach, CFS is used for subset selection of input metrics from the set
I = I1, ..., In. The further algorithms are applied only on the selected attributes for
data instances. This makes the clustering process faster and the regression model more
accurate by taking into account just the important metrics for the output metrics’
prediction.

3.3 Clustering and regression

Generally, the relevance feedback model that we propose can be described as a function
that takes a set of inputs and tries to define an output value:

Oj = fj(I), j = 1,m

In the above formula, the function fj can be:

a) a clustering rule followed by a regression model which return a numerical value

b) a clustering rule and a numbering (ranking) to:

b1) return a probability

b2) return a list of nominal values

The clustering process takes the set of instances and forms q groups (clusters):

Cluster(Inst,K)⇒ C1, ..., Cq

where:

- q is the total number of clusters

- K is the set of clustering criteria:

K = {Ki|Ki ∈ I,Ki is a clustering criterium} ⇒ K ⊆ I

The cluster number p on criteria K is:

CK
p =

{
Insti|Insti ∈ Inst,∀Instj ∈ CK

p , similarK(Insti, Instj)
}

q⋃
j=1

CK
j = Inst,

q⋂
j=1

CK
j = φ
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CK =
{
CK

p |p = 1, q
}
, where q is the cardinality of CK

Given a new workload Q characterized by a set of input parameters (metrics):

IW = (IW1, IW2, ..., IWn)

The objective is to find the cluster where the new workload belongs to:

CK
b = CK

j |similarK(IW , Ii),∀Ii ∈ CK
j , where j = 1, q , q = |CK |

The way that the prediction is applied in all previously mentioned cases is described
in the next paragraphs.

Case a)
Find a regression function which returns a numeric value. It will be used in pre-

diction of a numeric value of an output metric Op:

Op ∈ O, p ∈ {1, 2, ...,m}

fp : I → <
Op = fp(I)

The function fp is obtained by a regression method applied on the instances from the
selected cluster CK :

fp(I) =
n∑

i=1

aiIi + a0

The predicted value of Op for the given input Iw is:

OpW = fp(IW )

Case b1)
Find a probability function which returns a real value between 0 and 1. It is used in

prediction of a nominal output metric Op.The values of Op are from the set {n1, ..., ns}.
Define s probability functions fp1, ..., fps which output the probability values for

{n1, ..., ns}.
Inside the cluster CK

b perform a selection on fixed nominal values {n1, ..., ns}. The
result is a set of selection clusters:

CK1
b1 = Select(CK

b , K1), K1 = {n1}

...

CKs
bs = Select(CK

b , Ks), Ks = {ns}

CKt
bt =

{
Insti|Insti ∈ CK

b ,∀Instj ∈ CK
b , exactKt(Insti, Instj)

}
, t = 1, s

The appearance probability of the nominal value nt for input parameters IW is ntW

fpt(I) =
|CKt

bt |
|CK

b |

ntW = fpt(InstW ) =
|CKt

bt |
|CK

b |
Case b2)
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This case is used for getting the best configuration (nominal attribute) that maxi-
mizes the values from a set of constraints applied on the input metrics. The constraints
set Z ⊆ I (cost functions, performance metrics, etc.) is:

Z = {Z1, ..., Zc}

Consider the previous case b1) and the possible values for that nominal attribute
n1, ..., ns. The selection clusters are known: CKt

bt , t = 1, s.
Compute the mean performance for each input configuration for each cluster:

µt = avgZ(C
Kt
bt ), t = 1, s

µt = (µt1, ..., µtc)

Kt = {nt}
Sort descending the selection clusters Cb1, ..., Cbs by considering the mean performance
µt, t = 1, s as sorting criteria ⇒ the sorted result will be the set of selection clusters
Sb1, ..., Sbs . The output consist in the ordered list of nominal values from Sb1, ..., Sbs:

n(Sb1), ..., n(Sbs)

which represent the ordered list of nominal values from the best one to the worst one.

3.4 Kernel Canonical Correlation Analysis

A widely used method in multivariate statistics is Kernel Canonical Correlation Anal-
ysis (KCCA) mentioned by [3] and [4] as a variation of Canonical Correlation Analysis
(CCA). If PCA identifies dimensions of maximum variance in a dataset and the data is
projected onto these dimensions, CCA is a generalization of PCA. The canonical corre-
lation analysis finds dimensions of maximum correlation considering both datasets, but
its disadvantage is the fact that it is unable to identify which known input instances
are qualitatively similar to an unknown instance [5].

Given two multivariate datasets, KCCA computes basis vectors for subspaces in
which the projections of the two datasets are maximally correlated. This method
has been used successfully by [5] for modeling system performance. KCCA defines
similarity between known instances and unknown instances using a kernel function.
The correlation analysis is done on pairwise distances not on the raw data itself.

In our approach we have followed the method described by [5] for modeling system
performance. The feature vectors are defined by the input and output metrics. To
each input observation (input metrics for a given instance) it corresponds an output
observation (output metrics for a given instance). A similarity between any two input
feature vectors and between any two output vectors is defined. KCCA uses kernel
functions to compute distance metrics between all pairs of input vectors and pairs of
output vectors.

Given p instances we form an input matrix Kxof dimension p×p whose (i, j) entry
is the kernel evaluation kx(Ii, Ij). Another matrix Ky is also formed and its (i, j) entry
is the kernel evaluation ky(Oi, Oj). Since kx(Ii, Ij) represents similarity between Ii and
Ij and the same is valid for ky(Oi, Oj), the kernel matrices Kx and Ky are symmetric
and their diagonals are equal to one.

There are some restrictions on the two matrices Kx and Ky. They should be sym-
metric and positive semidefinite. The specific kernel functions that are used depend on
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the input and output features of the given system. One can experiment with Gaussian
kernels for example.

The algorithms considers the two kernel matrices Kx and Ky formed on the input
metrics and output metrics of each instance and it solves the generalized eigenvector
problem [5]: [

0 KxKy

KyKx 0

] [
A
B

]
= λ

[
KxKx 0

0 KyKy

] [
A
B

]
This procedure finds subspaces in the linear space spanned by the eigenfunctions

of the kernel functions such tat projections onto these subspaces are maximally corre-
lated. As stated by [5] KCCA produces a matrix A consisting of the basis vectors of a
subspace onto which Kx may be projected , giving Kx×A, and a matrix B consisting
of basis vectors of a subspace onto which Ky may be projected, such that Kx×A and
Ky ×B are maximally correlated. We call Kx ×A and Ky ×B the input and output
projections.

When a test instance comes, the kernel function kx is applied to it and then its
projection is found. We look for nearest neighbors in the projection input space
and find the corresponding projections in the output projection space. The difficult
problem is to map back from the output projection space into the original raw data
space. A solution is to look for the corresponding raw values of the output projection
neighbors and define the output values for the test instance based on them.
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4. Relevance Feedback - Revised Scenarios

This chapter revises our original proposal and adjusts the scenarios proposed in [2]. For
each scenario we define the input and output metrics on which the relevance feedback
will operate.

a) Provide a detailed list of metrics that will be used - atomic and compound

b) Discussion about aggregated values - will they be used in prediction, how will they
be used?

In [2] we have proposed three scenarios that deal with the relevance feedback
module. These scenarios are:

• Scalability analysis

• Bottleneck prediction

• Work-flow prediction based on raw data

In what follows we will describe each of these scenarios and we will provide the exact
list of metrics that are input and output for solving the prediction problem expressed
by the scenario. Some of the original scenarios have been revised. We consider input
the feature vector that comprises all the features needed by the relevance feedback
module in order to provide a satisfactory result for a given scenario. We consider
output the feature vector that will be provided as result by the relevance feedback
module for a given scenario.

4.1 Scalability analysis

Description: given a query and a work-flow predict the resources and execution time
for a successful accomplishment of the query such as:

a) Given a query and a workflow predict resources per platform, this meaning:

• The time needed until the platform will provide an answer to the given query,
in the conditions of a workflow;
• Total amount of memory that could be used for a successful execution of a

given query;
• Total number of interactions with the data layer;
• The average CPU load during the execution of the query/workflow

Input metrics: Intermediate
metrics:

Output metrics:

–query metrics QueryTotalResponseTime
QuerySizeInBytes avg(PlatformMemoryDim,queryExec)
QuerySizeInTriples avg(PlatformCPULoad,queryExec)
QueryNamespacesNb sum(PluginDataLayerAccessNo)
parse(QueryNamespace) -> list
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb

–workflow metrics
WorkflowPluginsNb
parse(WorkflowPlugins) -> list
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A preprocessing step of parsing the QueryNamespace, QueryDataSetSources and
WorkflowPlugins is needed to obtain a list of individual components. Then a clus-
tering method is performed by considering all the processed input metrics as clus-
tering criteria. All the output metrics are the result of a regression method inside
the previously found cluster. The values for PlatformMemoryDim and Platform-
CPULoad are computed by an average of all the instant values that are measured
during the query execution. The PluginDataLayerAccessNo is obtained by adding
all the values corresponding to each plugin.

b) Given a query and a workflow (formed of plugins P1, P2, P3, P4) predict the
resources used by each plugin:
Input metrics: Intermediate

metrics:
Output metrics:

–query metrics PluginTotalExecutionTime -> for each plugin
QuerySizeInBytes PluginThreadsStartedNb -> for each plugin
QuerySizeInTriples PluginNodesNb -> for each plugin
QueryNamespacesNb
parse(QueryNamespace) -> list
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb

–workflow metrics
WorkflowPluginsNb
parse(WorkflowPlugins) -> list

A preprocessing step of parsing the QueryNamespace, QueryDataSetSources and
WorkflowPlugins is needed to obtain a list of individual components. Then a clus-
tering method is performed by considering all the processed input metrics as clus-
tering criteria. All the output metrics are the result of a regression method inside
the previously found cluster. The values for PluginTotalExecutionTime, Plug-
inThreadsStartedNb and PluginNodesNb are output for each plugin (P1, P2, P3,
P4) of the workflow.

c) Given a query and a workflow (formed of plugins P1, P2, P3, P4) predict the
outputs provided by each plug-in. By outputs we understand number of triples:
Input metrics: Intermediate

metrics:
Output metrics:

–query metrics PluginOutputSizeInTriples -> for each plugin
QuerySizeInBytes PluginOutputSizeInBytes -> for each plugin
QuerySizeInTriples
QueryNamespacesNb
parse(QueryNamespace) -> list
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb

–workflow metrics
WorkflowPluginsNb
parse(WorkflowPlugins) -> list

A preprocessing step of parsing the QueryNamespace, QueryDataSetSources and
WorkflowPlugins is needed to obtain a list of individual components. Then a clus-
tering method is performed by considering all the processed input metrics as cluster-
ing criteria. All the output metrics are the result of a regression method inside the
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previously found cluster. The values for PluginTotalExecutionTime, PluginOut-
putSizeInTriples and PluginOutputSizeInBytes are output for each plugin (P1, P2,
P3, P4) of the workflow.

4.2 Bottleneck prediction

Description: Predict if the platform will provide a result to the query and the work-
flow will have a successful execution (success/failure analysis) or find the probability
that the work-flow chosen for my query to have a successful execution.

a) Given a query find the probability that it will be run successfully considering only
the parameters of the query. This scenario will find the first 3 best workflows and
for each of the three workflows it will provide the probability of error.
Input metrics: Intermediate metrics: Output metrics:
–query metrics QueryCompletionStatus Top 3 of: {
QuerySizeInBytes parse(WorkflowPlugins) -> list WorkflowPluginsNb
QuerySizeInTriples WorkflowPlugins -> list
QueryNamespacesNb ProbOfError
parse(QueryNamespace) -> list }
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb

A preprocessing step of parsing the QueryNamespace and QueryDataSetSources is
needed to obtain a list of individual components. Then a clustering method is per-
formed by considering all the processed input metrics and intermediate metrics as
clustering criteria. Then, inside each cluster, the ProbOfError is computed by find-
ing the ratio between how many queries have the completion status (QueryComple-
tionStatus) with value "failed" and the total number of queries.

b) Given a query and a workflow find the probability of a successful execution con-
sidering the parameters of the query and of the workflow. In this scenario we will
return a single probability of error - for the input workflow. This scenario is suit-
able for situations in which the input workflow is not in the top three best matches
found in case a). When we say that, we consider the parameters of the workflow
we may include the metrics for each plugin that is in the given workflow.
Input metrics: Intermediate metrics: Output metrics:
–query metrics QueryCompletionStatus ProbOfError
QuerySizeInBytes
QuerySizeInTriples
QueryNamespacesNb
parse(QueryNamespace) -> list
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb
–workflow metrics
WorkflowPluginsNb
parse(WorkflowPlugins) -> list

A preprocessing step of parsing the QueryNamespace, QueryDataSetSources and
WorkflowPlugins is needed to obtain a list of individual components. Then a clus-
tering method is performed by considering all the processed input metrics and the
QueryCompletionStatus metric as clustering criteria. Inside the obtained cluster,
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the ProbOfError is computed by finding the ratio between how many queries have
the completion statuses (QueryCompletionStatus) with value “failed” and the total
number of queries.

c) Given a query find the probability of error and the best suited workflows considering
the current status of the platform (i.e. other queries that are running and the
resources used in the current moment). The current status of the platform is given
by platform metrics, that will be input for the current scenario.
Input metrics: Intermediate metrics: Output metrics:
–query metrics QueryCompletionStatus Top 3 of: {
QuerySizeInBytes WorkflowPluginsNb
QuerySizeInTriples WorkflowPlugins -> list
QueryNamespacesNb ProbOfError
parse(QueryNamespace) -> list }
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb
–platform metrics
PlatformExecutionTime
PlatformCPULoad
PlatformMemoryUsage
PlatformMemoryDim
PlatformGarbageCollectingTime

A preprocessing step of parsing the QueryNamespace, QueryDataSetSources is
needed to obtain a list of individual components. Then a clustering method is
performed by considering all the processed input metrics and the QueryComple-
tionStatus metric as clustering criteria. Inside each obtained cluster, the ProbO-
fError is computed by finding the ratio between how many queries have the comple-
tion statuses (QueryCompletionStatus) with value "failed" and the total number
of queries. The best top three situations (which have less ProbOfError) will be
displayed.

d) Given a query and a workflow find the probability of error considering the current
status of the platform (i.e. other queries that are running and the resources used
in the current moment).
Input metrics: Intermediate metrics: Output metrics:
–query metrics QueryCompletionStatus ProbOfError
QuerySizeInBytes
QuerySizeInTriples
QueryNamespacesNb
parse(QueryNamespace) -> list
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb
–workflow metrics
WorkflowPluginsNb
parse(WorkflowPlugins) -> list
–platform metrics
PlatformExecutionTime
PlatformCPULoad
PlatformMemoryUsage
PlatformMemoryDim
PlatformGarbageCollectingTime

A preprocessing step of parsing the QueryNamespace and QueryDataSetSources
is needed to obtain a list of individual components. Then a clustering method is
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performed by considering all the processed input metrics and intermediate met-
rics as clustering criteria. Then, inside each cluster, the ProbOfError is com-
puted by finding the ratio between how many queries have the completion statuses
(QueryCompletionStatus) with value “failed” and the total number of queries.

4.3 Work-flow prediction based on raw data

Description: Given a query, predict possible work-flows to solve it.

a) Given a query, return a list of best workflows that may solve it.
Input metrics: Intermediate metrics: Output metrics:
–query metrics Top 3 of: {
QuerySizeInBytes WorkflowPluginsNb
QuerySizeInTriples WorkflowPlugins -> list
QueryNamespacesNb }
parse(QueryNamespace) -> list
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb

A best workflow can be defined as:

i. minimum amount of memory
ii. minimum CPU usage
iii. minimum amount of memory and CPU usage
iv. minimum amount of memory and minimum execution time
v. minimum number of threads and minimum execution time

For i) and ii) we will follow the steps:

• cluster by query similarity ⇒ C1, C2, ..., Cn

• find the cluster to which the given query belongs, let it be Cq

• inside Cq cluster by workflow identity (same plug-ins in the workflow) ⇒
Cq1, ..., Cqw

• for each Cqi, i = 1, w find the average memory or CPU usage
• return the first 3 workflows having minimum average memory or average CPU

usage

For iii)-v) we will follow the steps:

• cluster by query similarity ⇒ C1, C2, ..., Cn

• find the cluster to which the given query belongs, let it be Cq

• inside Cq cluster by workflow identity (same plug-ins in the workflow) ⇒
Cq1, ..., Cqw

• define a cost function fc(p1, p2) where p1, p2 can be:
– case iii) p1 = amount of memory, p2 = CPU usage
– case iv) p1 = memory, p2 = execution time
– case v) p1 = threads, p2 = execution time
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• a weight can be associated to each constraint; let a be the weight defined for
p1 and b the weight defined for p2
• the weight a represents the degree of importance of constraint p1 ; for defining

this weight we will consider the range of values of p1 and the range of values
of p2; the weight a will be proportional with the ratio of these ranges

• the cost functions can be:

– |a ∗ p1 + b ∗ p2|
–
√
a ∗ p1 + a ∗ p1 + b ∗ p2 + b ∗ p2

– other norms

• select the workflow that offers maximum performance that is minimum amount
of resources, and minimum execution time

b) Given a query and a plugin return the mostly used workflow
Input metrics: Intermediate metrics: Output metrics:
–query metrics Plug-in name WorkflowPluginsNb
QuerySizeInBytes Plug-in type WorkflowPlugins -> list
QuerySizeInTriples (decider, selecter, reasoner...)
QueryNamespacesNb
parse(QueryNamespace) -> list
QueryVariablesNb
QueryDataSetSourcesNb
parse(QueryDataSetSources) -> list
QueryOperatorsNb
QueryResultOrderingNb
QueryResultLimitNb
QueryResultOffsetNb

A preprocessing step of parsing the QueryNamespace and QueryDataSetSources
is needed to obtain a list of individual components. Then a clustering method is
performed by considering all the processed input metrics and intermediate metrics
(Plug-in name and Plug-in type) as clustering criteria. Then the size of each cluster
(the number of contained instances) is computed. The result is the workflow that
has the highest number of instances considering all determined clusters.
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5. Relevance Feedback Architecture

The relevance feedback component comprises two main modules:

• training module - performs data mining on top of instrumented data; Its output
is a prediction model.

• application module - applies the prediction model to new data. It interacts with
the visualization component from which it receives test data.

5.1 RF training

The whole architecture of the RF training module follows the model-view-controller
pattern. The prototype of the module contains several layers:

• graphical user interface

• controller components

• processing components

Figure 5.1 depicts the simplified architecture containing three layers and the intercon-
nection between them.

Figure 5.1: Tiers of the RF architecture

The entities of the graphical user interface have the view role, that is they realize
the interaction between the user and the RF training application. The controller
entities receive information from GUI, they process it and they send the corresponding
commands to the processing entities. Processing comprises entities that connect to
the data base and retrieve information from it, entities that perform the data mining
methods, entities that capture the results of the training process.

The training module has as main functionality the application of data mining
methods on the instrumented data and its output is a function able to model the
relation between some input metrics and output metrics.

The operations supported by the training module are:

• data loading: allows us to choose the data source that contains the training
instances. It is designed to open CSV files and data base configuration files.
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• data analysis: offers two algorithms: principal component analysis and correla-
tion based feature selection. The instances that have been loaded can be analyzed
by these two algorithms and some of the irrelevant features or instances can be
removed.

• training of the RF function based on interest scenario: provides clustering and
regression prediction method and KCCA method. They are applied on the whole
training set or on the data that results after applying PCA or CFS.

A general architecture is given in Figure 5.2.

Figure 5.2: Detailed architecture of RF

5.2 RF application

The application module consists in applying the models trained by RF training to
some test instances. Currently, the results of the clustering and regression have been
integrated in the visualization module. The resulting architecture is explained in
chapter 2 in section 2.2.
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6. End-user guide for Visualization

The visualization module is a web-based, client server application. It can be installed
and used on any computer. Our running demo on some initial data can be found at:
http://larkc.utcluj.ro/visual/.

The software programs that need to be installed in order to start using the visual-
ization module are:

1. Apache Tomcat version 7.0.6 or later, or other compatible application server1.

2. MySQL Server version 5.0.242 or later.

The source code for visualization can be downloaded from: https://github.com/
semantic-im/sim-vis. It contains the following:

• MySQLDb

• RestServer

• Visualization_Metrics

• Visualization_Prediction

The steps that need to be done are:

1. Install mysql db server

• http://dev.mysql.com/doc/refman/5.1/en/installing.html

• Create an empty data base with the name “larkc” (default user is “root” and
password is “1111”
• Import sql file: larkc-core-2011-01-28.sql into your database

2. For RestServer:

(a) Run the rest server with the input arguments:
java -cp .;..\lib \jrobin-1.5.9.1.jar;..\lib \org.restlet.jar;..\lib
\rrd4j-2.0.5.jar \Rrd4jJSONServer “path\to \the \RestServer \!rrds”

(b) Add the following dependencies to the project: the .jar files in RestServer
\lib.

3. Visualization_Metrics and Visualization_Prediction

(a) For Visualization_metrics it is recommended to run Eclipse with GWT
plugin installed.

(b) You should add the external libraries the following dependencies: lib\ofcgwt.jar
and lib\smartgwt.jar.

(c) For now visualization metrics and the prediction page are two separate
projects.

4. Running all the projects:
1http://tomcat.apache.org/
2http://dev.mysql.com/
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(a) In order to run the project the mysql server should be running.

(b) Start RestServer

(c) Run Visualization components (Metrics and Prediction) - recommended to
use Eclipse to run them because is is easier to debug them.
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7. End-user guide for Relevance Feedback

7.1 RF training

The training module can be downloaded from: github/sim/sim-rf/training. After
downloading the demo, start relFedLarkc.exe application. It will open a dialog window
that looks as in Figure 7.1. The dialog based window has several tabs:

Figure 7.1: Main window of the training module

• Load

• Pre-process

• Machine learning

• Results

The first step you need to do is to have some data for training. The application demo
comes with a data file (‘data.csv’). Select the ‘Load’ tab and press the ‘Choose data
source’ button. It will open a file chooser dialog. You should select a .csv file. The
structure of the .csv file should be the following:

• on the first line the names of the features separated by comma.

• on the second line the types of the features separated by comma (NUMERIC,
DATE, CATEGORICAL, STRING).

• on the next lines the values of the features for an instance (feature values are
separated by comma).
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After loading the .csv file a short summary on features and their values is displayed.
That is we display the list of features encountered in the data file and their type. For
each feature, it it is numeric, you can obtain its mean and standard deviation. Figure
7.2 depicts a screen shot.

Figure 7.2: Summary of sample training instances that were loaded by RF training
module

The second tab-dialog contains two radio buttons: PCA and CFS. In the demo
none of these is enabled because the number of training instances and features is too
small to allow such an analysis. For our next release we will have more training data
(we hope that we can capture data from two LarKC use-cases) and these algorithms
will have more relevance than.

The third tab contains the ’Machine Learning’ algorithms we have implemented.
We have enabled the ’Clustering and regression’ algorithm, as it has best results on
the sample data set. The first step you need to do in order to train the algorithm is
to choose the feature indexes. You should choose features that have a numeric type.
For example you could put in the training features edit box the following indexes:
“2,5,6,11,12”. In the Predicted feature you should input the index of the feature for
which you want the prediction. Be careful to choose a ‘numeric’ feature. Then check
the Clustering and Regression box. Next press the ‘Load test data and predict’ button
and choose the file on which you want to make the prediction. We have tested the
prediction on the training set and on some instances that we have removed from the
training set before the actual training was done. The results are pretty good, but
we strike for obtaining more relevant results after the data set is enlarged. Figure
7.3 marks the steps needed for obtaining prediction results (follow the order of steps
marked in red). Currently the prediction results are depicted in the same tab dialog
but we plan to move them in the ‘Results’ tab for our future release. The model has
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Figure 7.3: RF training - the steps needed for performing the training and prediction
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been integrated in the visualization module and there it can be tested on completely
new test instances.

7.2 RF application

The results provided by the RF training module are integrated in the visualization com-
ponent. An operational demo can be seen at: http://larkc.utcluj.ro/visual/.
Figure 7.4 offers a screen shot of the on-line demo. The models have been trained on
a small amount of data (about 25 queries, one workflow).

Figure 7.4: Relevance feedback integrated in the visualization component
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8. Conclusion

In this deliverable we reported about the advance of two components of Semantic In-
strumentation and Monitoring (SIM), the instrumentation and monitoring solution in
LarKC, namely visualization and relevance feedback. The deliverable contains updates
of the architecture of the two components presenting final design decision and status
of the technical implementation. The deliverable contains also a revision and refine-
ment of the scenarios that are supported by the relevance feedback component. The
set of metrics that are relevant for this task was refined. This deliverable defines also
a mathematical model for the relevance feedback. The implementation of this model
is available as part of the relevance feedback component. To support the interested
end users in using the instrumentation and monitoring tools, this deliverable contains
basic guides on how to use the visualization and relevance feedback tools. As the this
deliverable defines the final architecture and design of the visuzalization and relevance
feedback, further updates of these componets will include the advance of their imple-
mentation to cover the promised functionalities. Next steps include also the testing
and validation of instrumentation and monitoring tools, including visuzalitaion and
relevance feedback, an real monitoring data coming from the instrumented version of
LarKC platform, workflows and plugins.
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